Nuprl Lemma : divides-fact

m:ℕ. ∀c:{2..m 1-}.  (c (m)!)


Proof




Definitions occuring in Statement :  fact: (n)! divides: a int_seg: {i..j-} nat: all: x:A. B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: fact: (n)! so_lambda: λ2x.t[x] nat: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_apply: x[s] nat_plus: + bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf primrec-unroll all_wf subtract_wf divides_wf fact_wf subtract-add-cancel decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma le_wf set_wf less_than_wf primrec-wf2 nat_plus_wf nat_wf lt_int_wf bool_wf equal-wf-base int_subtype_base assert_wf le_int_wf bnot_wf divides_product uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf decidable__lt lelt_wf divides_weakening assoced_nelim int_seg_subtype_nat false_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality addEquality hypothesisEquality hypothesis setElimination rename productElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation because_Cache dependent_set_memberEquality unionElimination applyEquality baseApply closedConclusion baseClosed equalityTransitivity equalitySymmetry equalityElimination inrFormation inlFormation

Latex:
\mforall{}m:\mBbbN{}.  \mforall{}c:\{2..m  +  1\msupminus{}\}.    (c  |  (m)!)



Date html generated: 2018_05_21-PM-07_59_20
Last ObjectModification: 2018_05_19-PM-04_53_38

Theory : general


Home Index