Nuprl Lemma : divides-fact
∀m:ℕ. ∀c:{2..m + 1-}.  (c | (m)!)
Proof
Definitions occuring in Statement : 
fact: (n)!, 
divides: b | a, 
int_seg: {i..j-}, 
nat: ℕ, 
all: ∀x:A. B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
fact: (n)!, 
so_lambda: λ2x.t[x], 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
nat_plus: ℕ+, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
le: A ≤ B, 
less_than': less_than'(a;b), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
primrec-unroll, 
all_wf, 
subtract_wf, 
divides_wf, 
fact_wf, 
subtract-add-cancel, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
le_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
nat_plus_wf, 
nat_wf, 
lt_int_wf, 
bool_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
le_int_wf, 
bnot_wf, 
divides_product, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
equal_wf, 
decidable__lt, 
lelt_wf, 
divides_weakening, 
assoced_nelim, 
int_seg_subtype_nat, 
false_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
addEquality, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
because_Cache, 
dependent_set_memberEquality, 
unionElimination, 
applyEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
equalityElimination, 
inrFormation, 
inlFormation
Latex:
\mforall{}m:\mBbbN{}.  \mforall{}c:\{2..m  +  1\msupminus{}\}.    (c  |  (m)!)
Date html generated:
2018_05_21-PM-07_59_20
Last ObjectModification:
2018_05_19-PM-04_53_38
Theory : general
Home
Index