Nuprl Lemma : iterated-conjugate

[T:Type]. ∀[f,g,h:T ⟶ T]. ∀[m:ℕ].  ((λf.(g (f h))^m f) (g^m (f h^m)) ∈ (T ⟶ T))


Proof




Definitions occuring in Statement :  fun_exp: f^n compose: g nat: uall: [x:A]. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T top: Top uall: [x:A]. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q prop: fun_exp: f^n lt_int: i <j subtract: m ifthenelse: if then else fi  btrue: tt compose: g decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b true: True squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf primrec-unroll decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot compose_wf fun_exp_wf le_wf subtract-add-cancel squash_wf true_wf subtype_rel_self iff_weakening_equal fun_exp_add1-sq2 fun_exp_add1-sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity natural_numberEquality isect_memberEquality voidElimination voidEquality hypothesisEquality because_Cache cut introduction extract_by_obid hypothesis functionEquality isect_memberFormation sqequalHypSubstitution isectElimination thin setElimination rename intWeakElimination lambdaFormation independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination sqequalRule independent_pairFormation axiomEquality functionExtensionality applyEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination promote_hyp instantiate cumulativity dependent_set_memberEquality addEquality imageElimination universeEquality imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[f,g,h:T  {}\mrightarrow{}  T].  \mforall{}[m:\mBbbN{}].    ((\mlambda{}f.(g  o  (f  o  h))\^{}m  f)  =  (g\^{}m  o  (f  o  h\^{}m)))



Date html generated: 2018_05_21-PM-08_17_19
Last ObjectModification: 2018_05_19-PM-04_55_41

Theory : general


Home Index