Nuprl Lemma : iterated-conjugate
∀[T:Type]. ∀[f,g,h:T ⟶ T]. ∀[m:ℕ].  ((λf.(g o (f o h))^m f) = (g^m o (f o h^m)) ∈ (T ⟶ T))
Proof
Definitions occuring in Statement : 
fun_exp: f^n, 
compose: f o g, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
top: Top, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
and: P ∧ Q, 
prop: ℙ, 
fun_exp: f^n, 
lt_int: i <z j, 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
compose: f o g, 
decidable: Dec(P), 
or: P ∨ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
true: True, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
nat_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
primrec-unroll, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
compose_wf, 
fun_exp_wf, 
le_wf, 
subtract-add-cancel, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
fun_exp_add1-sq2, 
fun_exp_add1-sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
natural_numberEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
because_Cache, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
functionEquality, 
isect_memberFormation, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
sqequalRule, 
independent_pairFormation, 
axiomEquality, 
functionExtensionality, 
applyEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
dependent_set_memberEquality, 
addEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[f,g,h:T  {}\mrightarrow{}  T].  \mforall{}[m:\mBbbN{}].    ((\mlambda{}f.(g  o  (f  o  h))\^{}m  f)  =  (g\^{}m  o  (f  o  h\^{}m)))
Date html generated:
2018_05_21-PM-08_17_19
Last ObjectModification:
2018_05_19-PM-04_55_41
Theory : general
Home
Index