Nuprl Lemma : l-ordered-remove-combine

T:Type. ∀R:T ⟶ T ⟶ ℙ. ∀cmp:T ⟶ ℤ. ∀L:T List.
  (l-ordered(T;x,y.R[x;y];L)  l-ordered(T;x,y.R[x;y];remove-combine(cmp;L)))


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) remove-combine: remove-combine(cmp;l) list: List prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False cand: c∧ B not: ¬A subtype_rel: A ⊆B
Lemmas referenced :  list_induction l-ordered_wf remove-combine_wf list_wf true_wf l-ordered-nil-true remove-combine-nil nil_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int lt_int_wf assert_of_lt_int l-ordered-cons less_than_wf remove-combine-implies-member l_member_wf all_wf remove-combine-cons cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality cumulativity applyEquality functionExtensionality hypothesis dependent_functionElimination independent_functionElimination natural_numberEquality addLevel impliesFunctionality because_Cache productElimination isect_memberEquality voidElimination voidEquality rename unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination dependent_pairFormation promote_hyp instantiate independent_pairFormation productEquality universeEquality intEquality

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}cmp:T  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}L:T  List.
    (l-ordered(T;x,y.R[x;y];L)  {}\mRightarrow{}  l-ordered(T;x,y.R[x;y];remove-combine(cmp;L)))



Date html generated: 2018_05_21-PM-07_37_50
Last ObjectModification: 2017_07_26-PM-05_12_08

Theory : general


Home Index