Nuprl Lemma : l-ordered-remove-combine
∀T:Type. ∀R:T ⟶ T ⟶ ℙ. ∀cmp:T ⟶ ℤ. ∀L:T List.
(l-ordered(T;x,y.R[x;y];L)
⇒ l-ordered(T;x,y.R[x;y];remove-combine(cmp;L)))
Proof
Definitions occuring in Statement :
l-ordered: l-ordered(T;x,y.R[x; y];L)
,
remove-combine: remove-combine(cmp;l)
,
list: T List
,
prop: ℙ
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
int: ℤ
,
universe: Type
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
so_apply: x[s]
,
true: True
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
top: Top
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
cand: A c∧ B
,
not: ¬A
,
subtype_rel: A ⊆r B
Lemmas referenced :
list_induction,
l-ordered_wf,
remove-combine_wf,
list_wf,
true_wf,
l-ordered-nil-true,
remove-combine-nil,
nil_wf,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
lt_int_wf,
assert_of_lt_int,
l-ordered-cons,
less_than_wf,
remove-combine-implies-member,
l_member_wf,
all_wf,
remove-combine-cons,
cons_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
thin,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
sqequalRule,
lambdaEquality,
functionEquality,
cumulativity,
applyEquality,
functionExtensionality,
hypothesis,
dependent_functionElimination,
independent_functionElimination,
natural_numberEquality,
addLevel,
impliesFunctionality,
because_Cache,
productElimination,
isect_memberEquality,
voidElimination,
voidEquality,
rename,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
dependent_pairFormation,
promote_hyp,
instantiate,
independent_pairFormation,
productEquality,
universeEquality,
intEquality
Latex:
\mforall{}T:Type. \mforall{}R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}. \mforall{}cmp:T {}\mrightarrow{} \mBbbZ{}. \mforall{}L:T List.
(l-ordered(T;x,y.R[x;y];L) {}\mRightarrow{} l-ordered(T;x,y.R[x;y];remove-combine(cmp;L)))
Date html generated:
2018_05_21-PM-07_37_50
Last ObjectModification:
2017_07_26-PM-05_12_08
Theory : general
Home
Index