Nuprl Lemma : l-ordered-remove-repeats-fun

[A,B:Type].
  ∀R:A ⟶ A ⟶ ℙ. ∀eq:EqDecider(B). ∀f:A ⟶ B. ∀L:A List.
    (l-ordered(A;x,y.R[x;y];L)  l-ordered(A;x,y.R[x;y];remove-repeats-fun(eq;f;L)))


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) remove-repeats-fun: remove-repeats-fun(eq;f;L) list: List deq: EqDecider(T) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] remove-repeats-fun: remove-repeats-fun(eq;f;L) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] and: P ∧ Q cand: c∧ B deq: EqDecider(T) iff: ⇐⇒ Q exists: x:A. B[x] l_member: (x ∈ l) subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) nat: ge: i ≥  rev_implies:  Q
Lemmas referenced :  list_induction l-ordered_wf remove-repeats-fun_wf list_wf list_ind_nil_lemma nil_wf list_ind_cons_lemma l-ordered-filter bnot_wf member_filter_2 l_member_wf remove-repeats-fun-member int_seg_subtype_nat length_wf false_wf int_seg_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf less_than_wf equal_wf select_wf nat_properties decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma filter_wf5 all_wf l-ordered-cons cons_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality cumulativity applyEquality functionExtensionality hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality rename productElimination because_Cache setElimination independent_pairFormation setEquality dependent_pairFormation natural_numberEquality independent_isectElimination unionElimination imageElimination int_eqEquality intEquality computeAll equalitySymmetry productEquality addLevel impliesFunctionality universeEquality

Latex:
\mforall{}[A,B:Type].
    \mforall{}R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}.  \mforall{}eq:EqDecider(B).  \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}L:A  List.
        (l-ordered(A;x,y.R[x;y];L)  {}\mRightarrow{}  l-ordered(A;x,y.R[x;y];remove-repeats-fun(eq;f;L)))



Date html generated: 2018_05_21-PM-07_38_54
Last ObjectModification: 2017_07_26-PM-05_13_07

Theory : general


Home Index