Nuprl Lemma : l-ordered-remove-repeats-fun
∀[A,B:Type].
  ∀R:A ⟶ A ⟶ ℙ. ∀eq:EqDecider(B). ∀f:A ⟶ B. ∀L:A List.
    (l-ordered(A;x,y.R[x;y];L) 
⇒ l-ordered(A;x,y.R[x;y];remove-repeats-fun(eq;f;L)))
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
remove-repeats-fun: remove-repeats-fun(eq;f;L)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
remove-repeats-fun: remove-repeats-fun(eq;f;L)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
deq: EqDecider(T)
, 
iff: P 
⇐⇒ Q
, 
exists: ∃x:A. B[x]
, 
l_member: (x ∈ l)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
l-ordered_wf, 
remove-repeats-fun_wf, 
list_wf, 
list_ind_nil_lemma, 
nil_wf, 
list_ind_cons_lemma, 
l-ordered-filter, 
bnot_wf, 
member_filter_2, 
l_member_wf, 
remove-repeats-fun-member, 
int_seg_subtype_nat, 
length_wf, 
false_wf, 
int_seg_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
less_than_wf, 
equal_wf, 
select_wf, 
nat_properties, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
filter_wf5, 
all_wf, 
l-ordered-cons, 
cons_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
rename, 
productElimination, 
because_Cache, 
setElimination, 
independent_pairFormation, 
setEquality, 
dependent_pairFormation, 
natural_numberEquality, 
independent_isectElimination, 
unionElimination, 
imageElimination, 
int_eqEquality, 
intEquality, 
computeAll, 
equalitySymmetry, 
productEquality, 
addLevel, 
impliesFunctionality, 
universeEquality
Latex:
\mforall{}[A,B:Type].
    \mforall{}R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}.  \mforall{}eq:EqDecider(B).  \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}L:A  List.
        (l-ordered(A;x,y.R[x;y];L)  {}\mRightarrow{}  l-ordered(A;x,y.R[x;y];remove-repeats-fun(eq;f;L)))
Date html generated:
2018_05_21-PM-07_38_54
Last ObjectModification:
2017_07_26-PM-05_13_07
Theory : general
Home
Index