Nuprl Lemma : map-as-map-upto

[F:Top]. ∀[L:Top List].  (map(λx.F[x];L) map(λi.F[L[i]];upto(||L||)))


Proof




Definitions occuring in Statement :  upto: upto(n) select: L[n] length: ||as|| map: map(f;as) list: List uall: [x:A]. B[x] top: Top so_apply: x[s] lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j bfalse: ff cons: [a b] colength: colength(L) decidable: Dec(P) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) le: A ≤ B uiff: uiff(P;Q) int_seg: {i..j-} lelt: i ≤ j < k btrue: tt append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] compose: g
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list top_wf less_than_transitivity1 less_than_irreflexivity list-cases map_nil_lemma stuck-spread base_wf length_of_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int map_cons_lemma length_of_cons_lemma list_wf upto_decomp length_wf add_nat_wf length_wf_nat false_wf add-is-int-iff non_neg_length decidable__lt lelt_wf list_ind_cons_lemma list_ind_nil_lemma add-subtract-cancel map-map upto_wf int_seg_wf select_cons_tl_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom applyEquality because_Cache unionElimination baseClosed promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality instantiate cumulativity imageElimination pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[F:Top].  \mforall{}[L:Top  List].    (map(\mlambda{}x.F[x];L)  \msim{}  map(\mlambda{}i.F[L[i]];upto(||L||)))



Date html generated: 2018_05_21-PM-07_37_22
Last ObjectModification: 2017_07_26-PM-05_11_15

Theory : general


Home Index