Nuprl Lemma : next_wf

[k:ℤ]. ∀[p:{i:ℤk < i}  ⟶ 𝔹].  (next i > s.t. ↑p[i]) ∈ {i:ℤk < i ∧ (↑p[i]) ∧ (∀j:{k 1..i-}. (¬↑p[j]))}  supposi\000Cng ∃n:{i:ℤk < i} (↑p[n])


Proof




Definitions occuring in Statement :  next: (next i > s.t. ↑p[i]) int_seg: {i..j-} assert: b bool: 𝔹 less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B subtract: m uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q less_than': less_than'(a;b) true: True
Lemmas referenced :  le-add-cancel add_functionality_wrt_le add-commutes minus-one-mul-top add-swap minus-one-mul minus-add condition-implies-le not-lt-2 false_wf decidable__lt int_subtype_base add-is-int-iff lelt_wf not_wf int_seg_wf all_wf subtype_rel_sets and_wf int_term_value_add_lemma itermAdd_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt subtract_wf decidable__le next_wf_bound bool_wf assert_wf less_than_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination setEquality intEquality hypothesisEquality lambdaEquality applyEquality isect_memberEquality because_Cache functionEquality setElimination rename dependent_set_memberEquality dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation computeAll addEquality lambdaFormation productEquality baseApply closedConclusion baseClosed independent_functionElimination minusEquality

Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[p:\{i:\mBbbZ{}|  k  <  i\}    {}\mrightarrow{}  \mBbbB{}].
    (next  i  >  k  s.t.  \muparrow{}p[i])  \mmember{}  \{i:\mBbbZ{}|  k  <  i  \mwedge{}  (\muparrow{}p[i])  \mwedge{}  (\mforall{}j:\{k  +  1..i\msupminus{}\}.  (\mneg{}\muparrow{}p[j]))\}    supposing  \mexists{}n:\{i:\mBbbZ{}|  \000Ck  <  i\}  .  (\muparrow{}p[n])



Date html generated: 2016_05_15-PM-04_00_12
Last ObjectModification: 2016_01_16-AM-11_00_15

Theory : general


Home Index