Nuprl Lemma : next_wf
∀[k:ℤ]. ∀[p:{i:ℤ| k < i}  ⟶ 𝔹].  (next i > k s.t. ↑p[i]) ∈ {i:ℤ| k < i ∧ (↑p[i]) ∧ (∀j:{k + 1..i-}. (¬↑p[j]))}  supposi\000Cng ∃n:{i:ℤ| k < i} . (↑p[n])
Proof
Definitions occuring in Statement : 
next: (next i > k s.t. ↑p[i])
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
bool: 𝔹
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
le-add-cancel, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-lt-2, 
false_wf, 
decidable__lt, 
int_subtype_base, 
add-is-int-iff, 
lelt_wf, 
not_wf, 
int_seg_wf, 
all_wf, 
subtype_rel_sets, 
and_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
subtract_wf, 
decidable__le, 
next_wf_bound, 
bool_wf, 
assert_wf, 
less_than_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
setEquality, 
intEquality, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
addEquality, 
lambdaFormation, 
productEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_functionElimination, 
minusEquality
Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[p:\{i:\mBbbZ{}|  k  <  i\}    {}\mrightarrow{}  \mBbbB{}].
    (next  i  >  k  s.t.  \muparrow{}p[i])  \mmember{}  \{i:\mBbbZ{}|  k  <  i  \mwedge{}  (\muparrow{}p[i])  \mwedge{}  (\mforall{}j:\{k  +  1..i\msupminus{}\}.  (\mneg{}\muparrow{}p[j]))\}    supposing  \mexists{}n:\{i:\mBbbZ{}|  \000Ck  <  i\}  .  (\muparrow{}p[n])
Date html generated:
2016_05_15-PM-04_00_12
Last ObjectModification:
2016_01_16-AM-11_00_15
Theory : general
Home
Index