Nuprl Lemma : non-forking-rel_exp

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (non-forking(T;x,y.R[x;y])  (∀n:ℕnon-forking(T;x,y.x λx,y. R[x;y]^n y)))


Proof




Definitions occuring in Statement :  non-forking: non-forking(T;x,y.R[x; y]) rel_exp: R^n nat: uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] nat: false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: non-forking: non-forking(T;x,y.R[x; y]) so_apply: x[s1;s2] rel_exp: R^n eq_int: (i =z j) infix_ap: y subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b so_lambda: λ2x.t[x] subtype_rel: A ⊆B nequal: a ≠ b ∈  so_apply: x[s] so_lambda: λ2y.t[x; y]
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf infix_ap_wf rel_exp_wf equal_wf le_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int exists_wf nat_wf non-forking_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality instantiate cumulativity because_Cache universeEquality applyEquality functionExtensionality equalityTransitivity equalitySymmetry dependent_set_memberEquality unionElimination equalityElimination productElimination promote_hyp hyp_replacement applyLambdaEquality productEquality functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (non-forking(T;x,y.R[x;y])  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  non-forking(T;x,y.x  rel\_exp(T;  \mlambda{}x,y.  R[x;y];  n)  y)))



Date html generated: 2018_05_21-PM-09_05_16
Last ObjectModification: 2017_07_26-PM-06_28_05

Theory : general


Home Index