Nuprl Lemma : p-mu-exists

P:ℕ ⟶ 𝔹(Dec(∃n:ℕ(↑(P n)))  (∃x:ℕ Top. p-mu(P;x)))


Proof




Definitions occuring in Statement :  p-mu: p-mu(P;x) nat: assert: b bool: 𝔹 decidable: Dec(P) top: Top all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] union: left right
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q decidable: Dec(P) or: P ∨ Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) nat: ge: i ≥  p-mu: p-mu(P;x) cand: c∧ B
Lemmas referenced :  unit_wf2 it_wf int_term_value_add_lemma itermAdd_wf nat_properties primrec-wf2 less_than_wf set_wf decidable__lt p-mu_wf top_wf all_wf decidable__assert int_seg_subtype_nat decidable__exists_int_seg le_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma int_formula_prop_not_lemma intformeq_wf itermSubtract_wf intformnot_wf decidable__le lelt_wf false_wf int_seg_subtype subtract_wf decidable__equal_int int_seg_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties bool_wf assert_wf nat_wf exists_wf decidable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution unionElimination thin cut lemma_by_obid isectElimination hypothesis sqequalRule lambdaEquality applyEquality hypothesisEquality functionEquality productElimination natural_numberEquality because_Cache setElimination rename independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll addLevel equalityTransitivity equalitySymmetry setEquality levelHypothesis hypothesis_subsumption dependent_set_memberEquality instantiate independent_functionElimination unionEquality introduction addEquality inlEquality inrEquality

Latex:
\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (Dec(\mexists{}n:\mBbbN{}.  (\muparrow{}(P  n)))  {}\mRightarrow{}  (\mexists{}x:\mBbbN{}  +  Top.  p-mu(P;x)))



Date html generated: 2016_05_15-PM-03_32_48
Last ObjectModification: 2016_01_16-AM-10_51_06

Theory : general


Home Index