Nuprl Lemma : p-mu-exists
∀P:ℕ ⟶ 𝔹. (Dec(∃n:ℕ. (↑(P n))) 
⇒ (∃x:ℕ + Top. p-mu(P;x)))
Proof
Definitions occuring in Statement : 
p-mu: p-mu(P;x)
, 
nat: ℕ
, 
assert: ↑b
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
top: Top
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
union: left + right
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
p-mu: p-mu(P;x)
, 
cand: A c∧ B
Lemmas referenced : 
unit_wf2, 
it_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
nat_properties, 
primrec-wf2, 
less_than_wf, 
set_wf, 
decidable__lt, 
p-mu_wf, 
top_wf, 
all_wf, 
decidable__assert, 
int_seg_subtype_nat, 
decidable__exists_int_seg, 
le_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
intformeq_wf, 
itermSubtract_wf, 
intformnot_wf, 
decidable__le, 
lelt_wf, 
false_wf, 
int_seg_subtype, 
subtract_wf, 
decidable__equal_int, 
int_seg_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
bool_wf, 
assert_wf, 
nat_wf, 
exists_wf, 
decidable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
productElimination, 
natural_numberEquality, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
addLevel, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
levelHypothesis, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
instantiate, 
independent_functionElimination, 
unionEquality, 
introduction, 
addEquality, 
inlEquality, 
inrEquality
Latex:
\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (Dec(\mexists{}n:\mBbbN{}.  (\muparrow{}(P  n)))  {}\mRightarrow{}  (\mexists{}x:\mBbbN{}  +  Top.  p-mu(P;x)))
Date html generated:
2016_05_15-PM-03_32_48
Last ObjectModification:
2016_01_16-AM-10_51_06
Theory : general
Home
Index