Nuprl Lemma : retraction-fixedpoint

[T:Type]. ∀f:T ⟶ T. (retraction(T;f)  (∀x:T. ∃y:T. (((f y) y ∈ T) ∧ is f*(x))))


Proof




Definitions occuring in Statement :  retraction: retraction(T;f) fun-connected: is f*(x) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  retraction: retraction(T;f) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B nat: guard: {T} ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) less_than: a < b squash: T fun-connected: is f*(x) fun-path: y=f*(x) via L subtract: m last: last(L) select: L[n] cons: [a b] true: True int_seg: {i..j-} sq_type: SQType(T) lelt: i ≤ j < k
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf fun-connected-test2 equal_wf fun-connected_wf less_than_wf all_wf subtract_wf exists_wf set_wf primrec-wf2 nat_wf add_nat_wf false_wf le_wf decidable__le add-is-int-iff intformnot_wf itermAdd_wf intformeq_wf int_formula_prop_not_lemma int_term_value_add_lemma int_formula_prop_eq_lemma decidable__lt or_wf itermSubtract_wf int_term_value_subtract_lemma fun-connected_transitivity cons_wf nil_wf fun-path_wf length_of_cons_lemma length_of_nil_lemma reduce_hd_cons_lemma decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties select_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut dependent_pairFormation because_Cache applyEquality functionExtensionality hypothesisEquality cumulativity introduction extract_by_obid isectElimination equalityTransitivity hypothesis equalitySymmetry applyLambdaEquality setElimination rename natural_numberEquality independent_isectElimination lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll productEquality functionEquality dependent_set_memberEquality addEquality unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed independent_functionElimination universeEquality imageElimination imageMemberEquality instantiate independent_pairEquality axiomEquality hyp_replacement

Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  (retraction(T;f)  {}\mRightarrow{}  (\mforall{}x:T.  \mexists{}y:T.  (((f  y)  =  y)  \mwedge{}  y  is  f*(x))))



Date html generated: 2018_05_21-PM-07_47_52
Last ObjectModification: 2017_07_26-PM-05_25_46

Theory : general


Home Index