Nuprl Lemma : decidable__equal-fl-point

[T:Type]. ∀eq:EqDecider(T). ∀x,y:Point(face-lattice(T;eq)).  Dec(x y ∈ Point(face-lattice(T;eq)))


Proof




Definitions occuring in Statement :  face-lattice: face-lattice(T;eq) lattice-point: Point(l) deq: EqDecider(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T top: Top implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice uimplies: supposing a
Lemmas referenced :  deq_wf lattice-join_wf lattice-meet_wf equal_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set face-lattice_wf lattice-point_wf face-lattice-constraints_wf fset-contains-none_wf fset-all_wf union-deq_wf fset-antichain_wf assert_wf and_wf decidable-equal-deq decidable__equal_union decidable__equal_fset fset_wf decidable__equal_set fl-point-sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution cut lemma_by_obid isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalRule unionEquality hypothesisEquality independent_functionElimination because_Cache dependent_functionElimination lambdaEquality cumulativity applyEquality instantiate productEquality universeEquality independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}x,y:Point(face-lattice(T;eq)).    Dec(x  =  y)



Date html generated: 2020_05_20-AM-08_51_22
Last ObjectModification: 2016_01_19-PM-05_15_40

Theory : lattices


Home Index