Nuprl Lemma : face-lattice-subset-le

T:Type. ∀eq:EqDecider(T). ∀x,y:Point(face-lattice(T;eq)).  (x ⊆  x ≤ y)


Proof




Definitions occuring in Statement :  face-lattice: face-lattice(T;eq) lattice-le: a ≤ b lattice-point: Point(l) deq-fset: deq-fset(eq) f-subset: xs ⊆ ys fset: fset(T) union-deq: union-deq(A;B;a;b) deq: EqDecider(T) all: x:A. B[x] implies:  Q union: left right universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T top: Top subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q prop: implies:  Q iff: ⇐⇒ Q rev_implies:  Q squash: T bdd-distributive-lattice: BoundedDistributiveLattice uimplies: supposing a exists: x:A. B[x] cand: c∧ B guard: {T} f-subset: xs ⊆ ys
Lemmas referenced :  f-subset_weakening deq_wf lattice-join_wf lattice-meet_wf equal_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set face-lattice_wf lattice-point_wf f-subset_wf deq-fset_wf fset-member_wf face-lattice-le face-lattice-constraints_wf fset-contains-none_wf fset-all_wf union-deq_wf fset-antichain_wf assert_wf and_wf fset_wf fl-point-sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis lambdaEquality setElimination rename hypothesisEquality setEquality unionEquality dependent_functionElimination productElimination independent_functionElimination introduction imageElimination imageMemberEquality baseClosed applyEquality because_Cache cumulativity instantiate productEquality universeEquality independent_isectElimination dependent_pairFormation independent_pairFormation

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}x,y:Point(face-lattice(T;eq)).    (x  \msubseteq{}  y  {}\mRightarrow{}  x  \mleq{}  y)



Date html generated: 2020_05_20-AM-08_52_05
Last ObjectModification: 2016_01_20-AM-00_35_06

Theory : lattices


Home Index