Nuprl Lemma : face-lattice-subset-le
∀T:Type. ∀eq:EqDecider(T). ∀x,y:Point(face-lattice(T;eq)).  (x ⊆ y ⇒ x ≤ y)
Proof
Definitions occuring in Statement : 
face-lattice: face-lattice(T;eq), 
lattice-le: a ≤ b, 
lattice-point: Point(l), 
deq-fset: deq-fset(eq), 
f-subset: xs ⊆ ys, 
fset: fset(T), 
union-deq: union-deq(A;B;a;b), 
deq: EqDecider(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
and: P ∧ Q, 
prop: ℙ, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
squash: ↓T, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
guard: {T}, 
f-subset: xs ⊆ ys
Lemmas referenced : 
f-subset_weakening, 
deq_wf, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
face-lattice_wf, 
lattice-point_wf, 
f-subset_wf, 
deq-fset_wf, 
fset-member_wf, 
face-lattice-le, 
face-lattice-constraints_wf, 
fset-contains-none_wf, 
fset-all_wf, 
union-deq_wf, 
fset-antichain_wf, 
assert_wf, 
and_wf, 
fset_wf, 
fl-point-sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
lambdaEquality, 
setElimination, 
rename, 
hypothesisEquality, 
setEquality, 
unionEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
introduction, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
applyEquality, 
because_Cache, 
cumulativity, 
instantiate, 
productEquality, 
universeEquality, 
independent_isectElimination, 
dependent_pairFormation, 
independent_pairFormation
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}x,y:Point(face-lattice(T;eq)).    (x  \msubseteq{}  y  {}\mRightarrow{}  x  \mleq{}  y)
Date html generated:
2020_05_20-AM-08_52_05
Last ObjectModification:
2016_01_20-AM-00_35_06
Theory : lattices
Home
Index