Nuprl Lemma : count_pairs_wf
∀[T:Type]. ∀[L:T List]. ∀[P:T ⟶ T ⟶ 𝔹].  (count(x < y in L | P[x;y]) ∈ ℕ)
Proof
Definitions occuring in Statement : 
count_pairs: count(x < y in L | P[x; y])
, 
list: T List
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
count_pairs: count(x < y in L | P[x; y])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
so_lambda: λ2x y.t[x; y]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
so_apply: x[s1;s2]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
double_sum: sum(f[x; y] | x < n; y < m)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
less_than': less_than'(a;b)
Lemmas referenced : 
double_sum_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
istype-less_than, 
int_seg_wf, 
length_wf, 
istype-le, 
bool_wf, 
list_wf, 
istype-universe, 
non_neg_sum, 
length_wf_nat, 
sum_wf, 
lt_int_wf, 
assert_wf, 
less_than_wf, 
istype-false
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
lambdaEquality_alt, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
applyEquality, 
setElimination, 
rename, 
imageElimination, 
hypothesisEquality, 
dependent_functionElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
axiomEquality, 
functionIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeEquality, 
closedConclusion, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].    (count(x  <  y  in  L  |  P[x;y])  \mmember{}  \mBbbN{})
Date html generated:
2020_05_20-AM-07_49_03
Last ObjectModification:
2020_01_22-PM-05_15_17
Theory : list!
Home
Index