Nuprl Lemma : count_pairs_wf

[T:Type]. ∀[L:T List]. ∀[P:T ⟶ T ⟶ 𝔹].  (count(x < in P[x;y]) ∈ ℕ)


Proof




Definitions occuring in Statement :  count_pairs: count(x < in P[x; y]) list: List nat: bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  count_pairs: count(x < in P[x; y]) uall: [x:A]. B[x] member: t ∈ T nat: so_lambda: λ2y.t[x; y] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a band: p ∧b q ifthenelse: if then else fi  so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q double_sum: sum(f[x; y] x < n; y < m) so_lambda: λ2x.t[x] so_apply: x[s] less_than': less_than'(a;b)
Lemmas referenced :  double_sum_wf eqtt_to_assert assert_of_lt_int select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot iff_weakening_uiff istype-less_than int_seg_wf length_wf istype-le bool_wf list_wf istype-universe non_neg_sum length_wf_nat sum_wf lt_int_wf assert_wf less_than_wf istype-false
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache lambdaEquality_alt hypothesis inhabitedIsType lambdaFormation_alt unionElimination equalityElimination productElimination independent_isectElimination applyEquality setElimination rename imageElimination hypothesisEquality dependent_functionElimination natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination equalityIstype equalityTransitivity equalitySymmetry promote_hyp instantiate axiomEquality functionIsType isect_memberEquality_alt isectIsTypeImplies universeEquality closedConclusion cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].    (count(x  <  y  in  L  |  P[x;y])  \mmember{}  \mBbbN{})



Date html generated: 2020_05_20-AM-07_49_03
Last ObjectModification: 2020_01_22-PM-05_15_17

Theory : list!


Home Index