Nuprl Lemma : reduce2_shift
∀[A,T:Type]. ∀[L:T List]. ∀[k:A]. ∀[i:ℕ]. ∀[f:T ⟶ {i..i + ||L||-} ⟶ A ⟶ A].
  (reduce2(f;k;i;L) = reduce2(λx,i,l. (f x (i - 1) l);k;i + 1;L) ∈ A)
Proof
Definitions occuring in Statement : 
reduce2: reduce2(f;k;i;as)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
less_than: a < b
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
so_apply: x[s]
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
uall_wf, 
nat_wf, 
int_seg_wf, 
length_wf, 
equal_wf, 
reduce2_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
subtract_wf, 
int_seg_properties, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__lt, 
add-is-int-iff, 
intformless_wf, 
int_formula_prop_less_lemma, 
false_wf, 
lelt_wf, 
list_wf, 
length_of_nil_lemma, 
reduce2_nil_lemma, 
length_of_cons_lemma, 
reduce2_cons_lemma, 
squash_wf, 
true_wf, 
non_neg_length, 
subtype_rel_dep_function, 
int_seg_subtype, 
subtype_rel_self, 
add-subtract-cancel, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
functionEquality, 
setElimination, 
rename, 
because_Cache, 
addEquality, 
functionExtensionality, 
applyEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
productElimination, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_functionElimination, 
axiomEquality, 
lambdaFormation, 
imageMemberEquality, 
universeEquality
Latex:
\mforall{}[A,T:Type].  \mforall{}[L:T  List].  \mforall{}[k:A].  \mforall{}[i:\mBbbN{}].  \mforall{}[f:T  {}\mrightarrow{}  \{i..i  +  ||L||\msupminus{}\}  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (reduce2(f;k;i;L)  =  reduce2(\mlambda{}x,i,l.  (f  x  (i  -  1)  l);k;i  +  1;L))
Date html generated:
2017_10_01-AM-08_35_03
Last ObjectModification:
2017_07_26-PM-04_25_39
Theory : list!
Home
Index