Nuprl Lemma : reduce2_shift

[A,T:Type]. ∀[L:T List]. ∀[k:A]. ∀[i:ℕ]. ∀[f:T ⟶ {i..i ||L||-} ⟶ A ⟶ A].
  (reduce2(f;k;i;L) reduce2(λx,i,l. (f (i 1) l);k;i 1;L) ∈ A)


Proof




Definitions occuring in Statement :  reduce2: reduce2(f;k;i;as) length: ||as|| list: List int_seg: {i..j-} nat: uall: [x:A]. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: int_seg: {i..j-} lelt: i ≤ j < k guard: {T} less_than: a < b squash: T uiff: uiff(P;Q) so_apply: x[s] le: A ≤ B subtype_rel: A ⊆B true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction uall_wf nat_wf int_seg_wf length_wf equal_wf reduce2_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf subtract_wf int_seg_properties itermSubtract_wf int_term_value_subtract_lemma decidable__lt add-is-int-iff intformless_wf int_formula_prop_less_lemma false_wf lelt_wf list_wf length_of_nil_lemma reduce2_nil_lemma length_of_cons_lemma reduce2_cons_lemma squash_wf true_wf non_neg_length subtype_rel_dep_function int_seg_subtype subtype_rel_self add-subtract-cancel decidable__equal_int intformeq_wf int_formula_prop_eq_lemma iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis functionEquality setElimination rename because_Cache addEquality functionExtensionality applyEquality dependent_set_memberEquality natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll productElimination pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseApply closedConclusion baseClosed independent_functionElimination axiomEquality lambdaFormation imageMemberEquality universeEquality

Latex:
\mforall{}[A,T:Type].  \mforall{}[L:T  List].  \mforall{}[k:A].  \mforall{}[i:\mBbbN{}].  \mforall{}[f:T  {}\mrightarrow{}  \{i..i  +  ||L||\msupminus{}\}  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (reduce2(f;k;i;L)  =  reduce2(\mlambda{}x,i,l.  (f  x  (i  -  1)  l);k;i  +  1;L))



Date html generated: 2017_10_01-AM-08_35_03
Last ObjectModification: 2017_07_26-PM-04_25_39

Theory : list!


Home Index