Nuprl Lemma : qmin-as-qmax

[x,y:ℚ].  (qmin(x;y) -(qmax(-(x);-(y))) ∈ ℚ)


Proof




Definitions occuring in Statement :  qmin: qmin(x;y) qmax: qmax(x;y) qmul: s rationals: uall: [x:A]. B[x] minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qmin: qmin(x;y) qmax: qmax(x;y) subtype_rel: A ⊆B squash: T true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q uiff: uiff(P;Q) false: False all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff prop:
Lemmas referenced :  rationals_wf q_le_wf bool_wf equal-wf-T-base assert_wf qle_wf qmul_wf equal_wf qinv_inv_q iff_weakening_equal qadd_preserves_qle qinverse_q qadd_wf qle_antisymmetry bnot_wf not_wf qle_complement_qorder qadd_preserves_qless qless_wf qless_transitivity qless_irreflexivity uiff_transitivity2 eqtt_to_assert assert-q_le-eq uiff_transitivity eqff_to_assert assert_of_bnot squash_wf true_wf qadd_comm_q qadd_ac_1_q mon_ident_q
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry baseClosed minusEquality natural_numberEquality applyEquality lambdaEquality imageElimination imageMemberEquality independent_isectElimination productElimination independent_functionElimination voidElimination lambdaFormation unionElimination equalityElimination universeEquality dependent_functionElimination

Latex:
\mforall{}[x,y:\mBbbQ{}].    (qmin(x;y)  =  -(qmax(-(x);-(y))))



Date html generated: 2018_05_21-PM-11_58_28
Last ObjectModification: 2017_07_26-PM-06_48_06

Theory : rationals


Home Index