Nuprl Lemma : rv-ge-dist
∀n:ℕ. ∀a,b,c,p:ℝ^n.  (d(a;b) ≤ d(c;p) 
⇐⇒ cp ≥ ab)
Proof
Definitions occuring in Statement : 
rv-ge: cd ≥ ab
, 
real-vec-dist: d(x;y)
, 
real-vec: ℝ^n
, 
rleq: x ≤ y
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
rv-ge: cd ≥ ab
, 
not: ¬A
, 
rv-be: a_b_c
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
true: True
, 
false: False
, 
exists: ∃x:A. B[x]
, 
real-vec-sep: a ≠ b
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
real-vec-mul: a*X
, 
real-vec-add: X + Y
, 
req-vec: req-vec(n;x;y)
, 
nat: ℕ
, 
real-vec: ℝ^n
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
rdiv: (x/y)
, 
real-vec-sub: X - Y
, 
rv-T: rv-T(n;a;b;c)
, 
real-vec-be: real-vec-be(n;a;b;c)
, 
cand: A c∧ B
, 
rv-congruent: ab=cd
, 
real-vec-dist: d(x;y)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
squash: ↓T
, 
less_than: a < b
, 
ge: i ≥ j 
, 
nat_plus: ℕ+
, 
sq_exists: ∃x:{A| B[x]}
, 
rless: x < y
Lemmas referenced : 
rleq_wf, 
real-vec-dist_wf, 
real_wf, 
int-to-real_wf, 
rv-ge_wf, 
real-vec_wf, 
nat_wf, 
not_wf, 
exists_wf, 
real-vec-sep_wf, 
rv-between_wf, 
rv-congruent_wf, 
false_wf, 
or_wf, 
true_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
rv-be_wf, 
real-vec-add_wf, 
real-vec-mul_wf, 
real-vec-sub_wf, 
rdiv_wf, 
rless_wf, 
equal_wf, 
rless_transitivity1, 
int_seg_wf, 
rmul_preserves_req, 
radd_wf, 
rmul_wf, 
rsub_wf, 
rminus_wf, 
rinv_wf2, 
req_functionality, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
req_transitivity, 
itermAdd_wf, 
itermConstant_wf, 
itermMinus_wf, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
radd_functionality, 
rminus_functionality, 
rmul_functionality, 
req_weakening, 
rmul-rinv, 
rmul-rinv3, 
rv-T-iff, 
i-member_wf, 
rccint_wf, 
req-vec_wf, 
member_rccint_lemma, 
rmul_preserves_rleq, 
rleq_functionality, 
radd-preserves-rleq, 
real-vec-dist-nonneg, 
not-real-vec-sep-iff-eq, 
req-vec_weakening, 
req-vec_functionality, 
req-vec_inversion, 
radd-preserves-req, 
rv-be-dist, 
real-vec-dist-symmetry, 
real-vec-norm_wf, 
rabs_wf, 
real-vec-norm_functionality, 
real-vec-norm-mul, 
rabs-of-nonneg, 
rv-congruent_functionality, 
real-vec-dist-same-zero, 
rless_functionality, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
intformless_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
nat_plus_properties, 
not-rless, 
req_inversion, 
radd-zero-both, 
rmul-zero-both, 
radd-int, 
rmul-distrib2, 
rmul-identity1, 
radd-assoc, 
rminus-as-rmul, 
rless_irreflexivity, 
radd-preserves-rless
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
sqequalRule, 
because_Cache, 
productEquality, 
functionEquality, 
independent_functionElimination, 
unionElimination, 
voidElimination, 
dependent_pairFormation, 
independent_isectElimination, 
inrFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
productElimination, 
computeAll, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
applyLambdaEquality, 
hyp_replacement, 
existsLevelFunctionality, 
andLevelFunctionality, 
existsFunctionality, 
addLevel, 
impliesFunctionality, 
imageElimination, 
promote_hyp, 
addEquality, 
minusEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,p:\mBbbR{}\^{}n.    (d(a;b)  \mleq{}  d(c;p)  \mLeftarrow{}{}\mRightarrow{}  cp  \mgeq{}  ab)
Date html generated:
2017_10_03-AM-11_33_37
Last ObjectModification:
2017_07_28-AM-08_27_59
Theory : reals
Home
Index