Nuprl Lemma : rv-ge-dist

n:ℕ. ∀a,b,c,p:ℝ^n.  (d(a;b) ≤ d(c;p) ⇐⇒ cp ≥ ab)


Proof




Definitions occuring in Statement :  rv-ge: cd ≥ ab real-vec-dist: d(x;y) real-vec: ^n rleq: x ≤ y nat: all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B rev_implies:  Q rv-ge: cd ≥ ab not: ¬A rv-be: a_b_c so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q true: True false: False exists: x:A. B[x] real-vec-sep: a ≠ b uimplies: supposing a rneq: x ≠ y guard: {T} real-vec-mul: a*X real-vec-add: Y req-vec: req-vec(n;x;y) nat: real-vec: ^n uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top rdiv: (x/y) real-vec-sub: Y rv-T: rv-T(n;a;b;c) real-vec-be: real-vec-be(n;a;b;c) cand: c∧ B rv-congruent: ab=cd real-vec-dist: d(x;y) satisfiable_int_formula: satisfiable_int_formula(fmla) squash: T less_than: a < b ge: i ≥  nat_plus: + sq_exists: x:{A| B[x]} rless: x < y
Lemmas referenced :  rleq_wf real-vec-dist_wf real_wf int-to-real_wf rv-ge_wf real-vec_wf nat_wf not_wf exists_wf real-vec-sep_wf rv-between_wf rv-congruent_wf false_wf or_wf true_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle rv-be_wf real-vec-add_wf real-vec-mul_wf real-vec-sub_wf rdiv_wf rless_wf equal_wf rless_transitivity1 int_seg_wf rmul_preserves_req radd_wf rmul_wf rsub_wf rminus_wf rinv_wf2 req_functionality real_term_polynomial itermSubtract_wf itermMultiply_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 req_transitivity itermAdd_wf itermConstant_wf itermMinus_wf real_term_value_add_lemma real_term_value_minus_lemma radd_functionality rminus_functionality rmul_functionality req_weakening rmul-rinv rmul-rinv3 rv-T-iff i-member_wf rccint_wf req-vec_wf member_rccint_lemma rmul_preserves_rleq rleq_functionality radd-preserves-rleq real-vec-dist-nonneg not-real-vec-sep-iff-eq req-vec_weakening req-vec_functionality req-vec_inversion radd-preserves-req rv-be-dist real-vec-dist-symmetry real-vec-norm_wf rabs_wf real-vec-norm_functionality real-vec-norm-mul rabs-of-nonneg rv-congruent_functionality real-vec-dist-same-zero rless_functionality int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_less_lemma intformless_wf satisfiable-full-omega-tt nat_properties nat_plus_properties not-rless req_inversion radd-zero-both rmul-zero-both radd-int rmul-distrib2 rmul-identity1 radd-assoc rminus-as-rmul rless_irreflexivity radd-preserves-rless
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality natural_numberEquality sqequalRule because_Cache productEquality functionEquality independent_functionElimination unionElimination voidElimination dependent_pairFormation independent_isectElimination inrFormation equalityTransitivity equalitySymmetry dependent_functionElimination productElimination computeAll int_eqEquality intEquality isect_memberEquality voidEquality applyLambdaEquality hyp_replacement existsLevelFunctionality andLevelFunctionality existsFunctionality addLevel impliesFunctionality imageElimination promote_hyp addEquality minusEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,p:\mBbbR{}\^{}n.    (d(a;b)  \mleq{}  d(c;p)  \mLeftarrow{}{}\mRightarrow{}  cp  \mgeq{}  ab)



Date html generated: 2017_10_03-AM-11_33_37
Last ObjectModification: 2017_07_28-AM-08_27_59

Theory : reals


Home Index