Nuprl Lemma : ring_term_polynomial
∀r:CRng. ∀t:int_term().  ipolynomial-term(int_term_to_ipoly(t)) ≡ t
Proof
Definitions occuring in Statement : 
ringeq_int_terms: t1 ≡ t2, 
crng: CRng, 
int_term_to_ipoly: int_term_to_ipoly(t), 
ipolynomial-term: ipolynomial-term(p), 
int_term: int_term(), 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
iPolynomial: iPolynomial(), 
crng: CRng, 
so_apply: x[s], 
implies: P ⇒ Q, 
int_term_to_ipoly: int_term_to_ipoly(t), 
itermConstant: "const", 
int_term_ind: int_term_ind, 
itermVar: vvar, 
itermAdd: left (+) right, 
prop: ℙ, 
itermSubtract: left (-) right, 
itermMultiply: left (*) right, 
itermMinus: "-"num, 
guard: {T}, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
false: False, 
not: ¬A, 
ringeq_int_terms: t1 ≡ t2, 
ring_term_value: ring_term_value(f;t), 
ipolynomial-term: ipolynomial-term(p), 
ifthenelse: if b then t else f fi , 
null: null(as), 
nil: [], 
it: ⋅, 
btrue: tt, 
int-to-ring: int-to-ring(r;n), 
lt_int: i <z j, 
bfalse: ff, 
rng_nat_op: n ⋅r e, 
mon_nat_op: n ⋅ e, 
nat_op: n x(op;id) e, 
itop: Π(op,id) lb ≤ i < ub. E[i], 
ycomb: Y, 
grp_id: e, 
pi1: fst(t), 
pi2: snd(t), 
add_grp_of_rng: r↓+gp, 
rng_zero: 0, 
rng: Rng, 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
imonomial-term: imonomial-term(m), 
true: True, 
and: P ∧ Q, 
squash: ↓T, 
infix_ap: x f y, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
int_term-induction, 
ringeq_int_terms_wf, 
ipolynomial-term_wf, 
int_term_to_ipoly_wf, 
iPolynomial_wf, 
int_term_wf, 
crng_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
ring_term_value_wf, 
itermConstant_wf, 
rng_car_wf, 
null_cons_lemma, 
spread_cons_lemma, 
list_accum_nil_lemma, 
list_accum_cons_lemma, 
ring_term_value_mul_lemma, 
ring_term_value_const_lemma, 
ring_term_value_var_lemma, 
rng_times_wf, 
rng_times_one, 
equal_wf, 
squash_wf, 
true_wf, 
int-to-ring-one, 
subtype_rel_self, 
iff_weakening_equal, 
add-ipoly-ringeq, 
add_ipoly_wf, 
itermAdd_wf, 
add-ipoly_wf1, 
uiff_transitivity, 
add_ipoly-sq, 
ringeq_int_terms_functionality, 
ringeq_int_terms_weakening, 
itermAdd_functionality_wrt_ringeq, 
minus-poly-ringeq, 
minus-poly_wf, 
itermSubtract_wf, 
itermMinus_wf, 
ring_term_value_add_lemma, 
ring_term_value_minus_lemma, 
ring_term_value_sub_lemma, 
rng_plus_wf, 
rng_minus_wf, 
ringeq_int_terms_transitivity, 
itermMinus_functionality_wrt_ringeq, 
mul-ipoly-ringeq, 
mul_ipoly_wf, 
itermMultiply_wf, 
mul-ipoly_wf, 
mul_poly-sq, 
itermMultiply_functionality_wrt_ringeq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
independent_functionElimination, 
intEquality, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
int_eqReduceFalseSq, 
functionEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}r:CRng.  \mforall{}t:int\_term().    ipolynomial-term(int\_term\_to\_ipoly(t))  \mequiv{}  t
Date html generated:
2018_05_21-PM-03_17_24
Last ObjectModification:
2018_05_19-AM-08_08_35
Theory : rings_1
Home
Index