Nuprl Lemma : minus-poly-ringeq

r:Rng. ∀p:iPolynomial().  ipolynomial-term(minus-poly(p)) ≡ "-"ipolynomial-term(p)


Proof




Definitions occuring in Statement :  ringeq_int_terms: t1 ≡ t2 rng: Rng minus-poly: minus-poly(p) ipolynomial-term: ipolynomial-term(p) iPolynomial: iPolynomial() itermMinus: "-"num all: x:A. B[x]
Definitions unfolded in proof :  member: t ∈ T iPolynomial: iPolynomial() all: x:A. B[x] squash: T implies:  Q sq_stable: SqStable(P) subtype_rel: A ⊆B so_apply: x[s] less_than: a < b prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) and: P ∧ Q lelt: i ≤ j < k guard: {T} uimplies: supposing a int_seg: {i..j-} so_lambda: λ2x.t[x] rng: Rng uall: [x:A]. B[x] ringeq_int_terms: t1 ≡ t2 btrue: tt ifthenelse: if then else fi  minus-poly: minus-poly(p) ipolynomial-term: ipolynomial-term(p) true: True le: A ≤ B ge: i ≥  subtract: m uiff: uiff(P;Q) int_nzero: -o iMonomial: iMonomial() rev_uimplies: rev_uimplies(P;Q) rev_implies:  Q iff: ⇐⇒ Q infix_ap: y minus-monomial: minus-monomial(m)
Lemmas referenced :  rng_wf iPolynomial_wf squash_wf sq_stable__equal itermMinus_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le int_seg_properties select_wf imonomial-less_wf iMonomial_wf length_wf int_seg_wf all_wf minus-poly_wf ipolynomial-term_wf ring_term_value_wf equal_wf rng_car_wf sq_stable__all false_wf int_term_value_add_lemma itermAdd_wf length_of_cons_lemma cons_wf length_of_nil_lemma nil_wf list_wf ringeq_int_terms_wf list_induction rng_minus_zero int-to-ring-zero ring_term_value_minus_lemma ring_term_value_const_lemma null_nil_lemma map_nil_lemma select-cons-tl true_wf add-subtract-cancel lelt_wf non_neg_length int_term_value_subtract_lemma itermSubtract_wf subtract_wf add-member-int_seg2 ipolynomial-term-cons-ringeq subtype_rel_self sorted_wf int_nzero_wf subtype_rel_product imonomial-term_wf minus-monomial_wf map_cons_lemma ringeq_int_terms_functionality ringeq_int_terms_transitivity itermAdd_functionality_wrt_ringeq ringeq_int_terms_weakening itermMinus_functionality_wrt_ringeq iff_weakening_equal int-to-ring_wf infix_ap_wf int-to-ring-minus rng_times_wf rng_minus_wf rng_plus_wf ring_term_value_add_lemma imonomial-term-linear-ringeq rng_times_over_minus rng_minus_over_plus rng_plus_comm
Rules used in proof :  hypothesis extract_by_obid introduction cut rename thin setElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution imageElimination baseClosed hypothesisEquality imageMemberEquality sqequalRule independent_functionElimination axiomEquality independent_pairFormation voidEquality voidElimination isect_memberEquality int_eqEquality dependent_pairFormation approximateComputation unionElimination dependent_functionElimination productElimination independent_isectElimination natural_numberEquality dependent_set_memberEquality applyEquality functionExtensionality because_Cache lambdaEquality intEquality functionEquality isectElimination promote_hyp equalitySymmetry equalityTransitivity pointwiseFunctionality addEquality hyp_replacement independent_pairEquality setEquality minusEquality universeEquality

Latex:
\mforall{}r:Rng.  \mforall{}p:iPolynomial().    ipolynomial-term(minus-poly(p))  \mequiv{}  "-"ipolynomial-term(p)



Date html generated: 2018_05_21-PM-03_16_52
Last ObjectModification: 2018_01_25-PM-01_31_02

Theory : rings_1


Home Index