Nuprl Lemma : mul-ipoly-ringeq

r:CRng. ∀p,q:iMonomial() List.  ipolynomial-term(mul-ipoly(p;q)) ≡ ipolynomial-term(p) (*) ipolynomial-term(q)


Proof




Definitions occuring in Statement :  ringeq_int_terms: t1 ≡ t2 crng: CRng mul-ipoly: mul-ipoly(p;q) ipolynomial-term: ipolynomial-term(p) iMonomial: iMonomial() itermMultiply: left (*) right list: List all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q mul-ipoly: mul-ipoly(p;q) uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) ifthenelse: if then else fi  btrue: tt cons: [a b] iMonomial: iMonomial() so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q int_nzero: -o top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bfalse: ff ipolynomial-term: ipolynomial-term(p) null: null(as) nil: [] it: itermConstant: "const" ringeq_int_terms: t1 ≡ t2 crng: CRng rng: Rng and: P ∧ Q bool: 𝔹 unit: Unit uiff: uiff(P;Q) exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_uimplies: rev_uimplies(P;Q) true: True squash: T infix_ap: y subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  iMonomial_wf list-cases valueall-type-has-valueall list_wf list-valueall-type void-valueall-type nil_wf evalall-reduce null_nil_lemma product_subtype_list product-valueall-type int_nzero_wf sorted_wf subtype_rel_self set-valueall-type nequal_wf int-valueall-type cons_wf null_cons_lemma spread_cons_lemma crng_wf ring_term_value_const_lemma ring_term_value_mul_lemma rng_car_wf rng_times_zero ring_term_value_wf ipolynomial-term_wf int-to-ring-zero null_wf bool_wf eqtt_to_assert assert_of_null eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base btrue_wf and_wf bfalse_wf btrue_neq_bfalse ipolynomial-term-cons-ringeq eager-accum_wf mul-mono-poly_wf1 add-ipoly_wf1 itermMultiply_wf itermAdd_wf imonomial-term_wf int_term_wf ring_term_value_add_lemma rng_times_over_plus ringeq_int_terms_functionality ringeq_int_terms_weakening itermMultiply_functionality_wrt_ringeq mul-mono-poly-ringeq ringeq_int_terms_transitivity itermAdd_functionality_wrt_ringeq list_induction all_wf ringeq_int_terms_wf list_accum_wf list_accum_nil_lemma list_accum_cons_lemma rng_plus_wf squash_wf true_wf rng_plus_zero iff_weakening_equal add-ipoly-ringeq rng_times_wf rng_plus_assoc rng_plus_ac_1 rng_plus_comm eager-accum-list_accum
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality unionElimination sqequalRule voidEquality independent_isectElimination callbyvalueReduce promote_hyp hypothesis_subsumption productElimination lambdaEquality setEquality intEquality because_Cache independent_functionElimination natural_numberEquality isect_memberEquality voidElimination functionEquality setElimination rename equalitySymmetry equalityElimination equalityTransitivity dependent_pairFormation instantiate cumulativity baseClosed dependent_set_memberEquality independent_pairFormation applyLambdaEquality independent_pairEquality applyEquality imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}r:CRng.  \mforall{}p,q:iMonomial()  List.
    ipolynomial-term(mul-ipoly(p;q))  \mequiv{}  ipolynomial-term(p)  (*)  ipolynomial-term(q)



Date html generated: 2018_05_21-PM-03_17_17
Last ObjectModification: 2018_05_19-AM-08_08_31

Theory : rings_1


Home Index