Nuprl Lemma : mul-ipoly-ringeq
∀r:CRng. ∀p,q:iMonomial() List.  ipolynomial-term(mul-ipoly(p;q)) ≡ ipolynomial-term(p) (*) ipolynomial-term(q)
Proof
Definitions occuring in Statement : 
ringeq_int_terms: t1 ≡ t2, 
crng: CRng, 
mul-ipoly: mul-ipoly(p;q), 
ipolynomial-term: ipolynomial-term(p), 
iMonomial: iMonomial(), 
itermMultiply: left (*) right, 
list: T List, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
or: P ∨ Q, 
mul-ipoly: mul-ipoly(p;q), 
uimplies: b supposing a, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
cons: [a / b], 
iMonomial: iMonomial(), 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
int_nzero: ℤ-o, 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
bfalse: ff, 
ipolynomial-term: ipolynomial-term(p), 
null: null(as), 
nil: [], 
it: ⋅, 
itermConstant: "const", 
ringeq_int_terms: t1 ≡ t2, 
crng: CRng, 
rng: Rng, 
and: P ∧ Q, 
bool: 𝔹, 
unit: Unit, 
uiff: uiff(P;Q), 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
rev_uimplies: rev_uimplies(P;Q), 
true: True, 
squash: ↓T, 
infix_ap: x f y, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
iMonomial_wf, 
list-cases, 
valueall-type-has-valueall, 
list_wf, 
list-valueall-type, 
void-valueall-type, 
nil_wf, 
evalall-reduce, 
null_nil_lemma, 
product_subtype_list, 
product-valueall-type, 
int_nzero_wf, 
sorted_wf, 
subtype_rel_self, 
set-valueall-type, 
nequal_wf, 
int-valueall-type, 
cons_wf, 
null_cons_lemma, 
spread_cons_lemma, 
crng_wf, 
ring_term_value_const_lemma, 
ring_term_value_mul_lemma, 
rng_car_wf, 
rng_times_zero, 
ring_term_value_wf, 
ipolynomial-term_wf, 
int-to-ring-zero, 
null_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_null, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
btrue_wf, 
and_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
ipolynomial-term-cons-ringeq, 
eager-accum_wf, 
mul-mono-poly_wf1, 
add-ipoly_wf1, 
itermMultiply_wf, 
itermAdd_wf, 
imonomial-term_wf, 
int_term_wf, 
ring_term_value_add_lemma, 
rng_times_over_plus, 
ringeq_int_terms_functionality, 
ringeq_int_terms_weakening, 
itermMultiply_functionality_wrt_ringeq, 
mul-mono-poly-ringeq, 
ringeq_int_terms_transitivity, 
itermAdd_functionality_wrt_ringeq, 
list_induction, 
all_wf, 
ringeq_int_terms_wf, 
list_accum_wf, 
list_accum_nil_lemma, 
list_accum_cons_lemma, 
rng_plus_wf, 
squash_wf, 
true_wf, 
rng_plus_zero, 
iff_weakening_equal, 
add-ipoly-ringeq, 
rng_times_wf, 
rng_plus_assoc, 
rng_plus_ac_1, 
rng_plus_comm, 
eager-accum-list_accum
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
sqequalRule, 
voidEquality, 
independent_isectElimination, 
callbyvalueReduce, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
lambdaEquality, 
setEquality, 
intEquality, 
because_Cache, 
independent_functionElimination, 
natural_numberEquality, 
isect_memberEquality, 
voidElimination, 
functionEquality, 
setElimination, 
rename, 
equalitySymmetry, 
equalityElimination, 
equalityTransitivity, 
dependent_pairFormation, 
instantiate, 
cumulativity, 
baseClosed, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
independent_pairEquality, 
applyEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}r:CRng.  \mforall{}p,q:iMonomial()  List.
    ipolynomial-term(mul-ipoly(p;q))  \mequiv{}  ipolynomial-term(p)  (*)  ipolynomial-term(q)
Date html generated:
2018_05_21-PM-03_17_17
Last ObjectModification:
2018_05_19-AM-08_08_31
Theory : rings_1
Home
Index