Nuprl Lemma : add-ipoly-ringeq

r:Rng. ∀p,q:iMonomial() List.  ipolynomial-term(add-ipoly(p;q)) ≡ ipolynomial-term(p) (+) ipolynomial-term(q)


Proof




Definitions occuring in Statement :  ringeq_int_terms: t1 ≡ t2 rng: Rng add-ipoly: add-ipoly(p;q) ipolynomial-term: ipolynomial-term(p) iMonomial: iMonomial() itermAdd: left (+) right list: List all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: ringeq_int_terms: t1 ≡ t2 le: A ≤ B less_than': less_than'(a;b) guard: {T} decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) add-ipoly: add-ipoly(p;q) has-value: (a)↓ ifthenelse: if then else fi  btrue: tt cons: [a b] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bfalse: ff ipolynomial-term: ipolynomial-term(p) ring_term_value: ring_term_value(f;t) itermAdd: left (+) right int_term_ind: int_term_ind itermConstant: "const" rng: Rng bool: 𝔹 unit: Unit it: sq_type: SQType(T) bnot: ¬bb assert: b iMonomial: iMonomial() so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] int_nzero: -o callbyvalueall: callbyvalueall has-valueall: has-valueall(a) pi1: fst(t) nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q) imonomial-le: imonomial-le(m1;m2) pi2: snd(t) squash: T label: ...$L... t true: True iff: ⇐⇒ Q rev_implies:  Q infix_ap: y
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than length_wf iMonomial_wf subtract-1-ge-0 istype-nat add_nat_wf length_wf_nat istype-void istype-le decidable__le add-is-int-iff intformnot_wf itermAdd_wf intformeq_wf int_formula_prop_not_lemma int_term_value_add_lemma int_formula_prop_eq_lemma false_wf decidable__lt list_wf rng_wf non_neg_length list-cases value-type-has-value list-value-type nil_wf null_nil_lemma product_subtype_list cons_wf null_cons_lemma spread_cons_lemma ipolynomial-term_wf int-to-ring-zero rng_plus_zero ring_term_value_wf ring_term_value_add_lemma ring_term_value_const_lemma rng_car_wf imonomial-le_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot add-ipoly_wf1 valueall-type-has-valueall list-valueall-type product-valueall-type int_nzero_wf sorted_wf set-valueall-type nequal_wf int-valueall-type evalall-reduce ipolynomial-term-cons-ringeq int-value-type eq_int_wf assert_of_eq_int neg_assert_of_eq_int imonomial-term_wf length_of_cons_lemma int_nzero_properties subtract_wf itermSubtract_wf int_term_value_subtract_lemma ringeq_int_terms_functionality itermAdd_functionality_wrt_ringeq ringeq_int_terms_transitivity ringeq_int_terms_weakening intlex_wf intlex-antisym subtype_rel_universe1 set_subtype_base list_subtype_base int_subtype_base equal_wf squash_wf true_wf istype-universe set_wf member_wf subtype_rel_self iff_weakening_equal imonomial-term-add-ringeq rng_zero_wf imonomial-term-linear-ringeq rng_times_zero rng_plus_wf rng_properties rng_plus_assoc rng_plus_ac_1 rng_plus_comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination axiomEquality functionIsTypeImplies inhabitedIsType addEquality because_Cache dependent_set_memberEquality_alt equalityTransitivity equalitySymmetry applyLambdaEquality unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed productElimination equalityIstype callbyvalueReduce voidEquality hypothesis_subsumption functionIsType equalityElimination instantiate cumulativity setEquality intEquality int_eqReduceTrueSq int_eqReduceFalseSq independent_pairEquality applyEquality imageElimination universeEquality hyp_replacement imageMemberEquality

Latex:
\mforall{}r:Rng.  \mforall{}p,q:iMonomial()  List.
    ipolynomial-term(add-ipoly(p;q))  \mequiv{}  ipolynomial-term(p)  (+)  ipolynomial-term(q)



Date html generated: 2020_05_19-PM-10_08_08
Last ObjectModification: 2020_01_08-PM-06_06_09

Theory : rings_1


Home Index