Nuprl Lemma : mset_mon_for_elim
∀s:DSet. ∀T:Type. ∀f:T ⟶ (|s| List). ∀as:T List.
((For{mset_mon{s}} x ∈ as. mk_mset(f[x])) = mk_mset(For{<s List, @>} x ∈ as. f[x]) ∈ MSet{s})
Proof
Definitions occuring in Statement :
mset_mon: mset_mon{s}
,
mk_mset: mk_mset(as)
,
mset: MSet{s}
,
lapp_mon: <s List, @>
,
mon_for: For{g} x ∈ as. f[x]
,
list: T List
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
,
dset: DSet
,
set_car: |p|
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
dset: DSet
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
or: P ∨ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
mset_mon: mset_mon{s}
,
grp_id: e
,
pi2: snd(t)
,
pi1: fst(t)
,
lapp_mon: <s List, @>
,
cons: [a / b]
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
colength: colength(L)
,
nil: []
,
it: ⋅
,
guard: {T}
,
sq_type: SQType(T)
,
less_than: a < b
,
squash: ↓T
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
decidable: Dec(P)
,
subtype_rel: A ⊆r B
,
grp_op: *
,
infix_ap: x f y
,
mk_mset: mk_mset(as)
,
null_mset: 0{s}
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
mset_sum: a + b
Lemmas referenced :
list_wf,
istype-universe,
set_car_wf,
dset_wf,
nat_properties,
full-omega-unsat,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
list-cases,
mon_for_nil_lemma,
product_subtype_list,
colength-cons-not-zero,
colength_wf_list,
istype-false,
le_wf,
subtract-1-ge-0,
subtype_base_sq,
intformeq_wf,
int_formula_prop_eq_lemma,
set_subtype_base,
int_subtype_base,
spread_cons_lemma,
decidable__equal_int,
subtract_wf,
intformnot_wf,
itermSubtract_wf,
itermAdd_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
int_term_value_add_lemma,
decidable__le,
mon_for_cons_lemma,
nat_wf,
mk_mset_wf,
nil_wf,
equal_wf,
squash_wf,
true_wf,
mset_sum_wf,
mset_wf,
append_wf,
mon_for_wf,
lapp_mon_wf,
subtype_rel_self,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
hypothesis,
universeIsType,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
functionIsType,
setElimination,
rename,
universeEquality,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
dependent_functionElimination,
isect_memberEquality_alt,
voidElimination,
sqequalRule,
independent_pairFormation,
axiomEquality,
functionIsTypeImplies,
inhabitedIsType,
unionElimination,
promote_hyp,
hypothesis_subsumption,
productElimination,
equalityIsType1,
because_Cache,
dependent_set_memberEquality_alt,
instantiate,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
imageElimination,
equalityIsType4,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
intEquality,
imageMemberEquality
Latex:
\mforall{}s:DSet. \mforall{}T:Type. \mforall{}f:T {}\mrightarrow{} (|s| List). \mforall{}as:T List.
((For\{mset\_mon\{s\}\} x \mmember{} as. mk\_mset(f[x])) = mk\_mset(For\{<s List, @>\} x \mmember{} as. f[x]))
Date html generated:
2019_10_16-PM-01_06_31
Last ObjectModification:
2018_10_08-PM-00_17_17
Theory : mset
Home
Index