Nuprl Lemma : cubical-app_wf
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[w:{X ⊢ _:ΠA B}]. ∀[u:{X ⊢ _:A}].  (app(w; u) ∈ {X ⊢ _:(B)[u]})
Proof
Definitions occuring in Statement : 
cubical-app: app(w; u)
, 
cubical-pi: ΠA B
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:AF}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-term: {X ⊢ _:AF}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cubical-type: {X ⊢ _}
, 
pi1: fst(t)
, 
cubical-app: app(w; u)
, 
cubical-type-at: A(a)
, 
csm-ap-type: (AF)s
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
cubical-pi: ΠA B
, 
cubical-pi-family: cubical-pi-family(X;A;B;I;a)
, 
pi2: snd(t)
, 
cubical-type-ap-morph: (u a f)
, 
top: Top
, 
cube-set-restriction: f(s)
, 
type-cat: TypeCat
, 
cat-id: cat-id(C)
, 
mk-nat-trans: x |→ T[x]
, 
identity-trans: identity-trans(C;D;F)
, 
csm-id: 1(X)
, 
cc-adjoin-cube: (v;u)
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
csm-id-adjoin: [u]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
cand: A c∧ B
Lemmas referenced : 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
csm-id-adjoin_wf, 
list_wf, 
coordinate_name_wf, 
name-morph_wf, 
I-cube_wf, 
cube-set-restriction_wf, 
cubical-term_wf, 
cubical-pi_wf, 
cubical-type_wf, 
cubical-set_wf, 
id-morph_wf, 
csm-ap_wf, 
subtype_rel-equal, 
cubical-type-at_wf, 
cube-set-restriction-id, 
cc-adjoin-cube_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal, 
csm-id-adjoin-ap, 
subtype_rel_weakening, 
ext-eq_weakening, 
subtype_rel_wf, 
cubical-pi-family_wf, 
cc-adjoin-cube-restriction, 
name-comp_wf, 
subtype_rel_dep_function, 
name-comp-id-left, 
csm-ap-restriction, 
ap_mk_nat_trans_lemma, 
name-comp-id-right
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
setElimination, 
rename, 
productElimination, 
sqequalRule, 
functionIsType, 
universeIsType, 
because_Cache, 
equalityIstype, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
lambdaEquality_alt, 
natural_numberEquality, 
independent_isectElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
lambdaFormation, 
promote_hyp, 
applyLambdaEquality, 
functionEquality, 
lambdaEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
comment, 
productEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
functionExtensionality, 
hyp_replacement, 
setEquality
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:\mPi{}A  B\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].
    (app(w;  u)  \mmember{}  \{X  \mvdash{}  \_:(B)[u]\})
Date html generated:
2020_05_21-AM-10_51_11
Last ObjectModification:
2020_01_01-PM-02_49_36
Theory : cubical!sets
Home
Index