Nuprl Lemma : face-map-idempotent
∀A,B:Cname List. ∀x:nameset(A). ∀g:name-morph(A-[x];B). ∀i:ℕ2.
  (((x:=i) o ((x:=i) o g)) = ((x:=i) o g) ∈ name-morph(A;B))
Proof
Definitions occuring in Statement : 
name-comp: (f o g)
, 
face-map: (x:=i)
, 
name-morph: name-morph(I;J)
, 
nameset: nameset(L)
, 
cname_deq: CnameDeq
, 
coordinate_name: Cname
, 
list-diff: as-bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nameset: nameset(L)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
face-map: (x:=i)
, 
name-comp: (f o g)
, 
compose: f o g
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uext: uext(g)
, 
isname: isname(z)
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
bfalse: ff
, 
assert: ↑b
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
nequal: a ≠ b ∈ T 
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
face-map-comp-id, 
name-comp_wf, 
list-diff_wf, 
coordinate_name_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
face-map_wf2, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
false_wf, 
int_seg_subtype, 
int_seg_cases, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
lelt_wf, 
int_seg_wf, 
name-morph_wf, 
nameset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
natural_numberEquality, 
instantiate, 
cumulativity, 
intEquality, 
independent_functionElimination, 
voidElimination, 
hypothesis_subsumption, 
addEquality, 
independent_pairFormation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
promote_hyp, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}A,B:Cname  List.  \mforall{}x:nameset(A).  \mforall{}g:name-morph(A-[x];B).  \mforall{}i:\mBbbN{}2.
    (((x:=i)  o  ((x:=i)  o  g))  =  ((x:=i)  o  g))
Date html generated:
2017_10_05-AM-10_07_40
Last ObjectModification:
2017_07_28-AM-11_16_40
Theory : cubical!sets
Home
Index