Nuprl Lemma : csm-comp-op-to-comp-fun

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[H,K:j⊢]. ∀[tau:K j⟶ H]. ∀[sigma:H.𝕀 j⟶ Gamma].
[phi:{H ⊢ _:𝔽}]. ∀[u:{H, phi.𝕀 ⊢ _:(A)sigma}]. ∀[a0:{H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}].
  ((cop-to-cfun(cA) sigma phi a0)tau
  (cop-to-cfun(cA) sigma tau+ (phi)tau (u)tau+ (a0)tau)
  ∈ {K ⊢ _:(((A)sigma)[1(𝕀)])tau[(phi)tau |⟶ ((u)[1(𝕀)])tau]})


Proof




Definitions occuring in Statement :  comp-op-to-comp-fun: cop-to-cfun(cA) composition-op: Gamma ⊢ CompOp(A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm+: tau+ csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-id-adjoin: [u] csm-id: 1(X) uimplies: supposing a subtype_rel: A ⊆B and: P ∧ Q cand: c∧ B constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} comp-op-to-comp-fun: cop-to-cfun(cA) csm+: tau+ csm-comp: F implies:  Q all: x:A. B[x] guard: {T} csm-ap: (s)x csm-adjoin: (s;u) interval-0: 0(𝕀) prop: squash: T true: True compose: g constant-cubical-type: (X) cc-fst: p cc-snd: q csm-ap-type: (AF)s interval-type: 𝕀 cubical-type: {X ⊢ _} pi2: snd(t) pi1: fst(t) csm-ap-term: (t)s interval-1: 1(𝕀) composition-function: composition-function{j:l,i:l}(Gamma;A) subset-iota: iota
Lemmas referenced :  csm-ap-type_wf cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf interval-0_wf csm-ap-term_wf context-subset_wf thin-context-subset-adjoin csm-id-adjoin_wf-interval-0 constrained-cubical-term-eqcd istype-cubical-term face-type_wf cube_set_map_wf composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-type_wf cubical_set_wf interval-1_wf csm-id-adjoin_wf-interval-1 csm-composition-comp csm+_wf_interval csm-composition_wf composition-term-uniformity constrained-cubical-term_wf equal_wf squash_wf true_wf istype-universe cubical-term_wf composition-term_wf csm-face-type csm-comp_wf context-subset-map csm-context-subset-subtype3 csm-constrained-cubical-term cubical-term-eqcd csm-context-subset-subtype2 subset-cubical-term2 sub_cubical_set_self thin-context-subset subset-cubical-type context-subset-is-subset equal_functionality_wrt_subtype_rel2 cubical-type-cumulativity subtype_rel_self comp-op-to-comp-fun_wf context-subset-term-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin instantiate hypothesis hypothesisEquality equalityTransitivity equalitySymmetry independent_isectElimination because_Cache inhabitedIsType applyEquality sqequalRule lambdaEquality_alt cumulativity universeEquality independent_pairFormation promote_hyp productElimination dependent_set_memberEquality_alt independent_functionElimination dependent_functionElimination equalityIstype lambdaFormation_alt rename hyp_replacement imageElimination natural_numberEquality imageMemberEquality baseClosed applyLambdaEquality Error :memTop,  setElimination functionEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].  \mforall{}[H,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].
\mforall{}[sigma:H.\mBbbI{}  j{}\mrightarrow{}  Gamma].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[u:\{H,  phi.\mBbbI{}  \mvdash{}  \_:(A)sigma\}].
\mforall{}[a0:\{H  \mvdash{}  \_:((A)sigma)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}].
    ((cop-to-cfun(cA)  H  sigma  phi  u  a0)tau
    =  (cop-to-cfun(cA)  K  sigma  o  tau+  (phi)tau  (u)tau+  (a0)tau))



Date html generated: 2020_05_20-PM-04_26_48
Last ObjectModification: 2020_05_02-AM-09_29_47

Theory : cubical!type!theory


Home Index