Nuprl Lemma : empty-cubical-subset

[I:fset(ℕ)]. ∀[A,B:Top].  I,0 ⊢ <A, B>


Proof




Definitions occuring in Statement :  cubical-type: {X ⊢ _} cubical-subset: I,psi face_lattice: face_lattice(I) lattice-0: 0 fset: fset(T) nat: uall: [x:A]. B[x] top: Top member: t ∈ T pair: <a, b>
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} not: ¬A implies:  Q false: False subtype_rel: A ⊆B lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] bdd-distributive-lattice: BoundedDistributiveLattice all: x:A. B[x] uimplies: supposing a squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  top_wf fset_wf nat_wf empty-cubical-subset-I_cube I_cube_wf cubical-subset_wf lattice-0_wf face_lattice_wf subtype_rel_self names_wf assert_wf fset-antichain_wf union-deq_wf names-deq_wf fset-all_wf fset-contains-none_wf face-lattice-constraints_wf names-hom_wf bdd-distributive-lattice_wf cube-set-restriction_wf all_wf equal_wf nh-id_wf subtype_rel-equal squash_wf true_wf cube-set-restriction-id iff_weakening_equal nh-comp_wf cube-set-restriction-comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isect_memberEquality isectElimination thin hypothesisEquality because_Cache dependent_pairEquality functionExtensionality rename independent_functionElimination voidElimination applyEquality setEquality unionEquality productEquality lambdaEquality functionEquality setElimination independent_pairFormation lambdaFormation productElimination independent_isectElimination instantiate imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed dependent_functionElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[A,B:Top].    I,0  \mvdash{}  <A,  B>



Date html generated: 2017_10_05-AM-01_31_23
Last ObjectModification: 2017_07_28-AM-09_42_17

Theory : cubical!type!theory


Home Index