Nuprl Lemma : cong3-in-half-plane

e:EuclideanPlane. ∀a,b,c,x,y,u:Point.
  (c ab  xy  ab ≅ xy  (∃z:Point. (Cong3(abc,xyz) ∧ xy ∧ (u leftof xy ⇐⇒ leftof xy))))


Proof




Definitions occuring in Statement :  geo-cong-tri: Cong3(abc,a'b'c') euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-lsep: bc geo-left: leftof bc geo-point: Point all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q
Definitions unfolded in proof :  geo-lsep: bc geo-eq: a ≡ b stable: Stable{P} uiff: uiff(P;Q) geo-perp-in: ab  ⊥cd euclidean-plane: EuclideanPlane geo-cong-tri: Cong3(abc,a'b'c') cand: c∧ B oriented-plane: OrientedPlane squash: T sq_stable: SqStable(P) basic-geometry: BasicGeometry sq_exists: x:A [B[x]] subtract: m cons: [a b] select: L[n] false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k rev_implies:  Q int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) iff: ⇐⇒ Q prop: subtype_rel: A ⊆B uall: [x:A]. B[x] and: P ∧ Q guard: {T} member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  not-left-and-right geo-cong-tri_wf lsep-all-sym colinear-lsep-cycle geo-sep-or geo-between-symmetry lsep-opposite-iff geo-between_wf geo-between_functionality geo-length-flip geo-left_functionality geo-congruence-identity minimal-not-not-excluded-middle geo-lsep_functionality geo-colinear_functionality geo-perp-in_functionality geo-eq_weakening geo-congruent_functionality minimal-double-negation-hyp-elim geo-congruent-iff-length geo-congruent-sep geo-congruent-symmetry geo-between-implies-colinear geo-colinear-same right-angle-SAS not_wf false_wf stable__geo-congruent geo-sep-sym geo-extend-exists lsep-all-sym2 left-right-sep sq_stable__geo-left sq_stable__geo-perp-in sq_stable__and geo-left_wf geo-perp-in_wf Euclid-erect-2perp colinear-cong3 geo-point_wf geo-lsep_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-congruent_wf geo-colinear_wf istype-less_than istype-le int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-int itermConstant_wf intformle_wf intformnot_wf full-omega-unsat decidable__le length_of_nil_lemma istype-void length_of_cons_lemma geo-colinear-is-colinear-set lsep-iff-all-sep geo-sep_wf lsep-implies-sep Euclid-drop-perp-1
Rules used in proof :  equalityTransitivity promote_hyp unionIsType equalitySymmetry functionEquality unionEquality imageElimination baseClosed imageMemberEquality productEquality setElimination rename instantiate functionIsType inhabitedIsType productIsType lambdaEquality_alt dependent_pairFormation_alt approximateComputation independent_isectElimination unionElimination independent_pairFormation natural_numberEquality voidElimination isect_memberEquality_alt sqequalRule applyEquality isectElimination universeIsType dependent_set_memberEquality_alt productElimination hypothesis independent_functionElimination because_Cache hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,u:Point.
    (c  \#  ab
    {}\mRightarrow{}  u  \#  xy
    {}\mRightarrow{}  ab  \mcong{}  xy
    {}\mRightarrow{}  (\mexists{}z:Point.  (Cong3(abc,xyz)  \mwedge{}  z  \#  xy  \mwedge{}  (u  leftof  xy  \mLeftarrow{}{}\mRightarrow{}  z  leftof  xy))))



Date html generated: 2019_10_29-AM-09_18_22
Last ObjectModification: 2019_10_18-PM-03_15_17

Theory : euclidean!plane!geometry


Home Index