Nuprl Lemma : ip-weak-triangle-inequality

rv:InnerProductSpace. ∀a,b,x,p:Point.  (ax=ab  a_x_p  bp ≥ xp)


Proof




Definitions occuring in Statement :  ip-ge: cd ≥ ab ip-between: a_b_c ip-congruent: ab=cd inner-product-space: InnerProductSpace ss-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q ip-congruent: ab=cd uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B guard: {T} and: P ∧ Q uiff: uiff(P;Q)
Lemmas referenced :  ip-dist-between rv-norm-triangle-inequality2 ip-between_wf ip-congruent_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf rv-norm_wf rv-sub_wf real_wf rleq_wf int-to-real_wf req_wf rmul_wf rv-ip_wf radd_wf radd-preserves-rleq rminus_wf rleq_functionality req_weakening radd_functionality uiff_transitivity req_transitivity rminus-as-rmul radd-assoc req_inversion rmul-identity1 rmul-distrib2 rmul_functionality radd-int rmul-zero-both radd-zero-both ip-ge-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality independent_isectElimination hypothesis applyEquality instantiate sqequalRule because_Cache lambdaEquality setElimination rename setEquality productEquality natural_numberEquality productElimination minusEquality addEquality independent_functionElimination

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,x,p:Point.    (ax=ab  {}\mRightarrow{}  a\_x\_p  {}\mRightarrow{}  bp  \mgeq{}  xp)



Date html generated: 2017_10_05-AM-00_12_31
Last ObjectModification: 2017_03_19-PM-11_35_38

Theory : inner!product!spaces


Home Index