Nuprl Lemma : proj-sep-or

n:ℕ. ∀a,b,c:ℙ^n.  (a ≠  (a ≠ c ∨ b ≠ c))


Proof




Definitions occuring in Statement :  proj-sep: a ≠ b real-proj: ^n nat: all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q proj-sep: a ≠ b and: P ∧ Q member: t ∈ T nat: real-vec-sep: a ≠ b rless: x < y sq_exists: x:{A| B[x]} uall: [x:A]. B[x] subtype_rel: A ⊆B real: nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: sq_stable: SqStable(P) squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q real-vec-mul: a*X req-vec: req-vec(n;x;y) real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k uiff: uiff(P;Q) req_int_terms: t1 ≡ t2
Lemmas referenced :  real-vec-sep-cases sq_stable__less_than int-to-real_wf real_wf real-vec-dist_wf nat_plus_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf punit_wf real-vec_wf req_wf real-vec-norm_wf real-vec-mul_wf proj-sep_wf real-proj_wf nat_wf rless_functionality req_weakening req_inversion real-vec-dist-minus int_seg_wf rmul_wf int_seg_properties intformless_wf int_formula_prop_less_lemma itermSubtract_wf itermMultiply_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma real-vec-dist_functionality req-vec_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination dependent_set_memberEquality addEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality isectElimination applyEquality lambdaEquality sqequalRule because_Cache unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation setEquality imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry minusEquality inlFormation inrFormation

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbP{}\^{}n.    (a  \mneq{}  b  {}\mRightarrow{}  (a  \mneq{}  c  \mvee{}  b  \mneq{}  c))



Date html generated: 2017_10_05-AM-00_17_55
Last ObjectModification: 2017_06_18-PM-02_56_14

Theory : inner!product!spaces


Home Index