Nuprl Lemma : dense-in-reals-implies-accel
∀X:ℝ ⟶ ℙ
  (dense-in-interval((-∞, ∞);X)
  
⇒ (∀x:ℝ. ∀y:{y:ℝ| y = x} .  ((X x) 
⇒ (X y)))
  
⇒ (∀x:ℝ. ∀k:ℕ+.  ∃y:ℝ. ((y = accelerate(3;x) ∈ (ℕ+k ⟶ ℤ)) ∧ (X y))))
Proof
Definitions occuring in Statement : 
dense-in-interval: dense-in-interval(I;X)
, 
riiint: (-∞, ∞)
, 
req: x = y
, 
accelerate: accelerate(k;f)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
istype: istype(T)
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
guard: {T}
, 
rneq: x ≠ y
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
real: ℝ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
Lemmas referenced : 
dense-in-reals-iff, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-less_than, 
nat_plus_wf, 
real_wf, 
req_wf, 
subtype_rel_self, 
dense-in-interval_wf, 
riiint_wf, 
subtype_rel_dep_function, 
i-member_wf, 
member_riiint_lemma, 
blended-real-req, 
rleq_weakening_rless, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
blended-real-agrees, 
blended-real_wf, 
int_seg_wf, 
subtype_rel_function, 
int_seg_subtype_nat_plus, 
istype-false, 
accelerate_wf, 
rneq-int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
less_than_wf, 
int_subtype_base, 
div-cancel2, 
subtype_base_sq, 
nequal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
isectElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
functionIsType, 
setIsType, 
because_Cache, 
applyEquality, 
instantiate, 
universeEquality, 
cumulativity, 
setEquality, 
closedConclusion, 
inrFormation_alt, 
productIsType, 
equalityIstype, 
intEquality, 
baseApply, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
functionExtensionality, 
equalityTransitivity
Latex:
\mforall{}X:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}
    (dense-in-interval((-\minfty{},  \minfty{});X)
    {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  \mforall{}y:\{y:\mBbbR{}|  y  =  x\}  .    ((X  x)  {}\mRightarrow{}  (X  y)))
    {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  \mforall{}k:\mBbbN{}\msupplus{}.    \mexists{}y:\mBbbR{}.  ((y  =  accelerate(3;x))  \mwedge{}  (X  y))))
Date html generated:
2019_10_30-AM-07_20_30
Last ObjectModification:
2019_01_31-AM-11_44_33
Theory : reals
Home
Index