Nuprl Lemma : dense-in-reals-implies-accel

X:ℝ ⟶ ℙ
  (dense-in-interval((-∞, ∞);X)
   (∀x:ℝ. ∀y:{y:ℝx} .  ((X x)  (X y)))
   (∀x:ℝ. ∀k:ℕ+.  ∃y:ℝ((y accelerate(3;x) ∈ (ℕ+k ⟶ ℤ)) ∧ (X y))))


Proof




Definitions occuring in Statement :  dense-in-interval: dense-in-interval(I;X) riiint: (-∞, ∞) req: y accelerate: accelerate(k;f) real: int_seg: {i..j-} nat_plus: + prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q nat_plus: + uall: [x:A]. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] istype: istype(T) rless: x < y sq_exists: x:A [B[x]] guard: {T} rneq: x ≠ y rev_implies:  Q cand: c∧ B real: le: A ≤ B less_than': less_than'(a;b) int_nzero: -o true: True nequal: a ≠ b ∈  sq_type: SQType(T)
Lemmas referenced :  dense-in-reals-iff nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf istype-less_than nat_plus_wf real_wf req_wf subtype_rel_self dense-in-interval_wf riiint_wf subtype_rel_dep_function i-member_wf member_riiint_lemma blended-real-req rleq_weakening_rless rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int rless_wf blended-real-agrees blended-real_wf int_seg_wf subtype_rel_function int_seg_subtype_nat_plus istype-false accelerate_wf rneq-int intformeq_wf int_formula_prop_eq_lemma set_subtype_base less_than_wf int_subtype_base div-cancel2 subtype_base_sq nequal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination independent_functionElimination dependent_set_memberEquality_alt multiplyEquality natural_numberEquality setElimination rename isectElimination unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType functionIsType setIsType because_Cache applyEquality instantiate universeEquality cumulativity setEquality closedConclusion inrFormation_alt productIsType equalityIstype intEquality baseApply baseClosed sqequalBase equalitySymmetry functionExtensionality equalityTransitivity

Latex:
\mforall{}X:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}
    (dense-in-interval((-\minfty{},  \minfty{});X)
    {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  \mforall{}y:\{y:\mBbbR{}|  y  =  x\}  .    ((X  x)  {}\mRightarrow{}  (X  y)))
    {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  \mforall{}k:\mBbbN{}\msupplus{}.    \mexists{}y:\mBbbR{}.  ((y  =  accelerate(3;x))  \mwedge{}  (X  y))))



Date html generated: 2019_10_30-AM-07_20_30
Last ObjectModification: 2019_01_31-AM-11_44_33

Theory : reals


Home Index