Nuprl Lemma : dense-in-reals-iff
∀X:ℝ ⟶ ℙ. (dense-in-interval((-∞, ∞);X) 
⇐⇒ ∀x:ℝ. ∀n:ℕ+.  ∃y:ℝ. ((X y) ∧ (|x - y| < (r1/r(n)))))
Proof
Definitions occuring in Statement : 
dense-in-interval: dense-in-interval(I;X)
, 
riiint: (-∞, ∞)
, 
rdiv: (x/y)
, 
rless: x < y
, 
rabs: |x|
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
dense-in-interval: dense-in-interval(I;X)
, 
true: True
, 
rdiv: (x/y)
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
Lemmas referenced : 
nat_plus_wf, 
real_wf, 
dense-in-interval_wf, 
riiint_wf, 
subtype_rel_dep_function, 
i-member_wf, 
member_riiint_lemma, 
subtype_rel_self, 
set_wf, 
all_wf, 
exists_wf, 
rless_wf, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
true_wf, 
radd_wf, 
radd-preserves-rless, 
rless_functionality, 
rless-int-fractions2, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
rabs-difference-bound-iff, 
rless-implies-rless, 
rmul_wf, 
rinv_wf2, 
itermSubtract_wf, 
itermAdd_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
ravg-dist, 
small-reciprocal-real, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rsub_functionality_wrt_rleq, 
rleq_weakening_rless, 
rleq_weakening, 
rmul_preserves_rless, 
rminus_wf, 
rmul-zero-both, 
minus-one-mul-top, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
nequal_wf, 
itermMinus_wf, 
radd-zero, 
radd-rminus-assoc, 
req_weakening, 
rmul_functionality, 
rabs-of-nonneg, 
req_transitivity, 
radd_functionality, 
rmul-rinv3, 
int-rinv-cancel, 
real_term_value_minus_lemma, 
ravg_wf, 
ravg-between, 
req_inversion, 
rless_transitivity1, 
radd-preserves-rleq, 
rleq_functionality, 
rless_functionality_wrt_implies, 
radd_functionality_wrt_rless1, 
rabs-difference-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
universeEquality, 
setEquality, 
independent_isectElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
because_Cache, 
productEquality, 
functionExtensionality, 
natural_numberEquality, 
inrFormation, 
productElimination, 
independent_functionElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
functionEquality, 
dependent_set_memberEquality, 
multiplyEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
minusEquality, 
addLevel
Latex:
\mforall{}X:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}.  (dense-in-interval((-\minfty{},  \minfty{});X)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    \mexists{}y:\mBbbR{}.  ((X  y)  \mwedge{}  (|x  -  y|  <  (r1/r(n)))))
Date html generated:
2017_10_03-AM-10_10_09
Last ObjectModification:
2017_09_13-PM-00_16_06
Theory : reals
Home
Index