Nuprl Lemma : dense-in-reals-iff

X:ℝ ⟶ ℙ(dense-in-interval((-∞, ∞);X) ⇐⇒ ∀x:ℝ. ∀n:ℕ+.  ∃y:ℝ((X y) ∧ (|x y| < (r1/r(n)))))


Proof




Definitions occuring in Statement :  dense-in-interval: dense-in-interval(I;X) riiint: (-∞, ∞) rdiv: (x/y) rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: nat_plus: + prop: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a top: Top rev_implies:  Q nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False dense-in-interval: dense-in-interval(I;X) true: True rdiv: (x/y) cand: c∧ B uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 less_than: a < b squash: T less_than': less_than'(a;b) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y int_nzero: -o nequal: a ≠ b ∈  sq_type: SQType(T) rless: x < y sq_exists: x:{A| B[x]}
Lemmas referenced :  nat_plus_wf real_wf dense-in-interval_wf riiint_wf subtype_rel_dep_function i-member_wf member_riiint_lemma subtype_rel_self set_wf all_wf exists_wf rless_wf rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf true_wf radd_wf radd-preserves-rless rless_functionality rless-int-fractions2 itermMultiply_wf int_term_value_mul_lemma rabs-difference-bound-iff rless-implies-rless rmul_wf rinv_wf2 itermSubtract_wf itermAdd_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma ravg-dist small-reciprocal-real rleq_functionality_wrt_implies rleq_weakening_equal rsub_functionality_wrt_rleq rleq_weakening_rless rleq_weakening rmul_preserves_rless rminus_wf rmul-zero-both minus-one-mul-top subtype_base_sq int_subtype_base equal-wf-base nequal_wf itermMinus_wf radd-zero radd-rminus-assoc req_weakening rmul_functionality rabs-of-nonneg req_transitivity radd_functionality rmul-rinv3 int-rinv-cancel real_term_value_minus_lemma ravg_wf ravg-between req_inversion rless_transitivity1 radd-preserves-rleq rleq_functionality rless_functionality_wrt_implies radd_functionality_wrt_rless1 rabs-difference-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality instantiate cumulativity sqequalRule lambdaEquality universeEquality setEquality independent_isectElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality setElimination rename because_Cache productEquality functionExtensionality natural_numberEquality inrFormation productElimination independent_functionElimination unionElimination approximateComputation dependent_pairFormation int_eqEquality intEquality functionEquality dependent_set_memberEquality multiplyEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry minusEquality addLevel

Latex:
\mforall{}X:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}.  (dense-in-interval((-\minfty{},  \minfty{});X)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    \mexists{}y:\mBbbR{}.  ((X  y)  \mwedge{}  (|x  -  y|  <  (r1/r(n)))))



Date html generated: 2017_10_03-AM-10_10_09
Last ObjectModification: 2017_09_13-PM-00_16_06

Theory : reals


Home Index