Nuprl Lemma : ravg-dist
∀x,y:ℝ.  ((|ravg(x;y) - x| = ((r1/r(2)) * |y - x|)) ∧ (|ravg(x;y) - y| = ((r1/r(2)) * |y - x|)))
Proof
Definitions occuring in Statement : 
ravg: ravg(x;y)
, 
rdiv: (x/y)
, 
rabs: |x|
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
top: Top
, 
req_int_terms: t1 ≡ t2
, 
rdiv: (x/y)
, 
ravg: ravg(x;y)
, 
not: ¬A
, 
false: False
, 
le: A ≤ B
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
radd_functionality, 
rabs-rmul, 
req_inversion, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_minus_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
rmul-rinv3, 
rabs_functionality, 
rmul_functionality, 
req_transitivity, 
req_functionality, 
req_weakening, 
le_wf, 
false_wf, 
absval_pos, 
equal_wf, 
nat_wf, 
absval_wf, 
req-int, 
iff_weakening_equal, 
rabs-int, 
true_wf, 
squash_wf, 
req_wf, 
itermConstant_wf, 
itermMultiply_wf, 
rinv_wf2, 
req-iff-rsub-is-0, 
itermMinus_wf, 
itermAdd_wf, 
itermVar_wf, 
itermSubtract_wf, 
rmul_comm, 
rless_wf, 
rminus_wf, 
radd_wf, 
int-to-real_wf, 
ravg_wf, 
rsub_wf, 
rabs_wf, 
real_wf, 
rless-int, 
rdiv_wf, 
rmul_wf, 
rmul_preserves_req, 
rabs-rminus
Rules used in proof : 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
approximateComputation, 
minusEquality, 
dependent_set_memberEquality, 
intEquality, 
rename, 
setElimination, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
applyEquality, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
hypothesisEquality, 
independent_pairFormation, 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
inrFormation, 
hypothesis, 
sqequalRule, 
independent_isectElimination, 
because_Cache, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}x,y:\mBbbR{}.    ((|ravg(x;y)  -  x|  =  ((r1/r(2))  *  |y  -  x|))  \mwedge{}  (|ravg(x;y)  -  y|  =  ((r1/r(2))  *  |y  -  x|)))
Date html generated:
2017_10_03-AM-08_42_11
Last ObjectModification:
2017_07_31-AM-10_29_42
Theory : reals
Home
Index