Nuprl Lemma : ravg-dist

x,y:ℝ.  ((|ravg(x;y) x| ((r1/r(2)) |y x|)) ∧ (|ravg(x;y) y| ((r1/r(2)) |y x|)))


Proof




Definitions occuring in Statement :  ravg: ravg(x;y) rdiv: (x/y) rabs: |x| rsub: y req: y rmul: b int-to-real: r(n) real: all: x:A. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  top: Top req_int_terms: t1 ≡ t2 rdiv: (x/y) ravg: ravg(x;y) not: ¬A false: False le: A ≤ B nat: subtype_rel: A ⊆B true: True less_than': less_than'(a;b) squash: T less_than: a < b rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) prop: implies:  Q rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] cand: c∧ B and: P ∧ Q all: x:A. B[x]
Lemmas referenced :  radd_functionality rabs-rmul req_inversion real_term_value_mul_lemma real_term_value_const_lemma real_term_value_minus_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_sub_lemma real_polynomial_null rmul-rinv3 rabs_functionality rmul_functionality req_transitivity req_functionality req_weakening le_wf false_wf absval_pos equal_wf nat_wf absval_wf req-int iff_weakening_equal rabs-int true_wf squash_wf req_wf itermConstant_wf itermMultiply_wf rinv_wf2 req-iff-rsub-is-0 itermMinus_wf itermAdd_wf itermVar_wf itermSubtract_wf rmul_comm rless_wf rminus_wf radd_wf int-to-real_wf ravg_wf rsub_wf rabs_wf real_wf rless-int rdiv_wf rmul_wf rmul_preserves_req rabs-rminus
Rules used in proof :  voidEquality voidElimination isect_memberEquality int_eqEquality approximateComputation minusEquality dependent_set_memberEquality intEquality rename setElimination universeEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality applyEquality baseClosed imageMemberEquality natural_numberEquality hypothesisEquality independent_pairFormation independent_functionElimination productElimination dependent_functionElimination inrFormation hypothesis sqequalRule independent_isectElimination because_Cache thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}x,y:\mBbbR{}.    ((|ravg(x;y)  -  x|  =  ((r1/r(2))  *  |y  -  x|))  \mwedge{}  (|ravg(x;y)  -  y|  =  ((r1/r(2))  *  |y  -  x|)))



Date html generated: 2017_10_03-AM-08_42_11
Last ObjectModification: 2017_07_31-AM-10_29_42

Theory : reals


Home Index