Nuprl Lemma : dot-product-split-first

[n:ℕ+]. ∀[x,y:ℝ^n].  (x⋅(((x 0) (y 0)) + λi.(x (i 1))⋅λi.(y (i 1))))


Proof




Definitions occuring in Statement :  dot-product: x⋅y real-vec: ^n req: y rmul: b radd: b nat_plus: + uall: [x:A]. B[x] apply: a lambda: λx.A[x] subtract: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sq_stable: SqStable(P) implies:  Q squash: T nat: nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b sq_type: SQType(T) guard: {T} dot-product: x⋅y subtract: m so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) subtype_rel: A ⊆B less_than': less_than'(a;b) true: True rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 req-vec: req-vec(n;x;y)
Lemmas referenced :  sq_stable__req real-vec_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le nat_plus_wf dot-product_wf radd_wf rmul_wf decidable__lt istype-less_than subtract_wf itermSubtract_wf int_term_value_subtract_lemma int_seg_properties itermAdd_wf int_term_value_add_lemma int_seg_wf decidable__equal_int subtype_base_sq int_subtype_base rsum_wf intformeq_wf int_formula_prop_eq_lemma add-member-int_seg2 rsum-empty int-to-real_wf itermMultiply_wf req-iff-rsub-is-0 req_functionality rsum-single req_weakening real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_const_lemma dot-product-split nat_plus_subtype_nat real-vec-subtype radd_functionality dot-product_functionality add-commutes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_functionElimination sqequalRule imageMemberEquality hypothesisEquality baseClosed imageElimination because_Cache universeIsType dependent_set_memberEquality_alt setElimination rename dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation applyEquality productIsType addEquality productElimination instantiate cumulativity intEquality closedConclusion minusEquality setIsType inhabitedIsType equalityTransitivity equalitySymmetry equalityIstype baseApply sqequalBase lambdaFormation_alt

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (x\mcdot{}y  =  (((x  0)  *  (y  0))  +  \mlambda{}i.(x  (i  +  1))\mcdot{}\mlambda{}i.(y  (i  +  1))))



Date html generated: 2019_10_30-AM-08_06_15
Last ObjectModification: 2019_07_01-AM-10_46_09

Theory : reals


Home Index