Nuprl Lemma : r2-compass-compass

a,b:ℝ^2. ∀c:{c:ℝ^2| a ≠ c} . ∀d:{d:ℝ^2| 
                                 ↓∃p,q:ℝ^2
                                   ((ab=ap ∧ (¬¬(∃w:ℝ^2. (c_w_d ∧ cw=cp)))) ∧ cd=cq ∧ (¬¬(∃w:ℝ^2. (a_w_b ∧ aw=aq))))} .
  ∃u:{u:ℝ^2| ab=au ∧ cd=cu} 
   (∃v:{ℝ^2| ((ab=av ∧ cd=cv)
             ∧ ((↓∃p,q:ℝ^2. ((ab=ap ∧ (↓∃w:ℝ^2. (c_w_d ∧ cw=cp ∧ w ≠ d))) ∧ cd=cq ∧ (↓∃w:ℝ^2. (a_w_b ∧ aw=aq ∧ w ≠ b))))
                (r2-left(u;a;c) ∧ r2-left(v;c;a))))})


Proof




Definitions occuring in Statement :  r2-left: r2-left(p;q;r) rv-be: a_b_c real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec: ^n all: x:A. B[x] sq_exists: x:{A| B[x]} exists: x:A. B[x] not: ¬A squash: T implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q sq_stable: SqStable(P) squash: T prop: uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] rv-congruent: ab=cd cand: c∧ B subtype_rel: A ⊆B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a stable: Stable{P} or: P ∨ Q sq_exists: x:{A| B[x]} iff: ⇐⇒ Q rev_implies:  Q rless: x < y real-vec-sep: a ≠ b
Lemmas referenced :  rv-compass-compass-lemma sq_stable__real-vec-sep set_wf real-vec_wf false_wf le_wf squash_wf exists_wf rv-congruent_wf not_wf rv-be_wf real-vec-sep_wf req_wf real-vec-dist_wf rleq_wf real_wf int-to-real_wf stable__rleq or_wf rv-be-dist radd_wf radd-preserves-rleq rminus_wf rleq_functionality radd-rminus-both radd-rminus-assoc real-vec-dist-nonneg minimal-double-negation-hyp-elim minimal-not-not-excluded-middle req_weakening req_transitivity radd_functionality r2-left_wf sq_exists_wf rless_wf sq_stable__rless radd-preserves-rless rless_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename hypothesis independent_functionElimination because_Cache sqequalRule imageMemberEquality baseClosed imageElimination isectElimination dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaEquality productEquality productElimination dependent_pairFormation applyEquality setEquality functionEquality independent_isectElimination voidElimination unionElimination

Latex:
\mforall{}a,b:\mBbbR{}\^{}2.  \mforall{}c:\{c:\mBbbR{}\^{}2|  a  \mneq{}  c\}  .  \mforall{}d:\{d:\mBbbR{}\^{}2| 
                                                                  \mdownarrow{}\mexists{}p,q:\mBbbR{}\^{}2
                                                                      ((ab=ap  \mwedge{}  (\mneg{}\mneg{}(\mexists{}w:\mBbbR{}\^{}2.  (c\_w\_d  \mwedge{}  cw=cp))))
                                                                      \mwedge{}  cd=cq
                                                                      \mwedge{}  (\mneg{}\mneg{}(\mexists{}w:\mBbbR{}\^{}2.  (a\_w\_b  \mwedge{}  aw=aq))))\}  .
    \mexists{}u:\{u:\mBbbR{}\^{}2|  ab=au  \mwedge{}  cd=cu\} 
      (\mexists{}v:\{\mBbbR{}\^{}2|  ((ab=av  \mwedge{}  cd=cv)
                          \mwedge{}  ((\mdownarrow{}\mexists{}p,q:\mBbbR{}\^{}2
                                      ((ab=ap  \mwedge{}  (\mdownarrow{}\mexists{}w:\mBbbR{}\^{}2.  (c\_w\_d  \mwedge{}  cw=cp  \mwedge{}  w  \mneq{}  d)))
                                      \mwedge{}  cd=cq
                                      \mwedge{}  (\mdownarrow{}\mexists{}w:\mBbbR{}\^{}2.  (a\_w\_b  \mwedge{}  aw=aq  \mwedge{}  w  \mneq{}  b))))
                              {}\mRightarrow{}  (r2-left(u;a;c)  \mwedge{}  r2-left(v;c;a))))\})



Date html generated: 2017_10_03-AM-11_53_24
Last ObjectModification: 2017_08_13-PM-01_06_59

Theory : reals


Home Index