Nuprl Lemma : real-continuity3
∀a,b:ℝ.
  ∀f:[a, b] ⟶ℝ
    (∀x,y:{x:ℝ| x ∈ [a, b]} .  (f x ≠ f y 
⇒ x ≠ y)
    
⇐⇒ ∀k:ℕ+. ∃d:{d:ℝ| r0 < d} . ∀x,y:{x:ℝ| x ∈ [a, b]} .  ((|x - y| ≤ d) 
⇒ (|(f x) - f y| ≤ (r1/r(k))))) 
  supposing a ≤ b
Proof
Definitions occuring in Statement : 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
natural_number: $n
Definitions unfolded in proof : 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
sq_exists: ∃x:{A| B[x]}
, 
rless: x < y
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
rfun: I ⟶ℝ
, 
so_lambda: λ2x.t[x]
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
continuous: f[x] continuous for x ∈ I
, 
rccint: [l, u]
, 
i-approx: i-approx(I;n)
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
cand: A c∧ B
Lemmas referenced : 
sq_stable__rless, 
set_wf, 
icompact_wf, 
i-approx_wf, 
real-continuity2, 
less_than'_wf, 
rsub_wf, 
real_wf, 
nat_plus_wf, 
continuous-rneq, 
rccint_wf, 
i-member_wf, 
all_wf, 
exists_wf, 
rless_wf, 
int-to-real_wf, 
rleq_wf, 
rabs_wf, 
rdiv_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rfun_wf
Rules used in proof : 
computeAll, 
voidEquality, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
inrFormation, 
functionEquality, 
independent_functionElimination, 
because_Cache, 
setEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
natural_numberEquality, 
minusEquality, 
rename, 
setElimination, 
applyEquality, 
isectElimination, 
voidElimination, 
independent_pairEquality, 
productElimination, 
lambdaEquality, 
sqequalRule, 
introduction, 
isect_memberFormation, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lemma_by_obid, 
cut, 
productEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
dependent_set_memberFormation
Latex:
\mforall{}a,b:\mBbbR{}.
    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}
        (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    (f  x  \mneq{}  f  y  {}\mRightarrow{}  x  \mneq{}  y)
        \mLeftarrow{}{}\mRightarrow{}  \mforall{}k:\mBbbN{}\msupplus{}
                    \mexists{}d:\{d:\mBbbR{}|  r0  <  d\} 
                      \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((|x  -  y|  \mleq{}  d)  {}\mRightarrow{}  (|(f  x)  -  f  y|  \mleq{}  (r1/r(k))))) 
    supposing  a  \mleq{}  b
Date html generated:
2016_05_18-AM-11_12_27
Last ObjectModification:
2016_01_17-AM-00_18_03
Theory : reals
Home
Index