Nuprl Lemma : real-continuity3

a,b:ℝ.
  ∀f:[a, b] ⟶ℝ
    (∀x,y:{x:ℝx ∈ [a, b]} .  (f x ≠  x ≠ y)
    ⇐⇒ ∀k:ℕ+. ∃d:{d:ℝr0 < d} . ∀x,y:{x:ℝx ∈ [a, b]} .  ((|x y| ≤ d)  (|(f x) y| ≤ (r1/r(k))))) 
  supposing a ≤ b


Proof




Definitions occuring in Statement :  rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rdiv: (x/y) rneq: x ≠ y rleq: x ≤ y rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: nat_plus: + uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q set: {x:A| B[x]}  apply: a natural_number: $n
Definitions unfolded in proof :  top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) sq_exists: x:{A| B[x]} rless: x < y or: P ∨ Q guard: {T} rneq: x ≠ y nat_plus: + so_apply: x[s] rfun: I ⟶ℝ so_lambda: λ2x.t[x] rev_implies:  Q iff: ⇐⇒ Q prop: real: subtype_rel: A ⊆B uall: [x:A]. B[x] false: False implies:  Q not: ¬A and: P ∧ Q le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y uimplies: supposing a member: t ∈ T all: x:A. B[x] continuous: f[x] continuous for x ∈ I rccint: [l, u] i-approx: i-approx(I;n) squash: T sq_stable: SqStable(P) cand: c∧ B
Lemmas referenced :  sq_stable__rless set_wf icompact_wf i-approx_wf real-continuity2 less_than'_wf rsub_wf real_wf nat_plus_wf continuous-rneq rccint_wf i-member_wf all_wf exists_wf rless_wf int-to-real_wf rleq_wf rabs_wf rdiv_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rfun_wf
Rules used in proof :  computeAll voidEquality isect_memberEquality intEquality int_eqEquality dependent_pairFormation unionElimination inrFormation functionEquality independent_functionElimination because_Cache setEquality dependent_set_memberEquality independent_pairFormation independent_isectElimination equalitySymmetry equalityTransitivity axiomEquality natural_numberEquality minusEquality rename setElimination applyEquality isectElimination voidElimination independent_pairEquality productElimination lambdaEquality sqequalRule introduction isect_memberFormation hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lemma_by_obid cut productEquality imageElimination baseClosed imageMemberEquality dependent_set_memberFormation

Latex:
\mforall{}a,b:\mBbbR{}.
    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}
        (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    (f  x  \mneq{}  f  y  {}\mRightarrow{}  x  \mneq{}  y)
        \mLeftarrow{}{}\mRightarrow{}  \mforall{}k:\mBbbN{}\msupplus{}
                    \mexists{}d:\{d:\mBbbR{}|  r0  <  d\} 
                      \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((|x  -  y|  \mleq{}  d)  {}\mRightarrow{}  (|(f  x)  -  f  y|  \mleq{}  (r1/r(k))))) 
    supposing  a  \mleq{}  b



Date html generated: 2016_05_18-AM-11_12_27
Last ObjectModification: 2016_01_17-AM-00_18_03

Theory : reals


Home Index