Nuprl Lemma : rv-Tsep
∀n:ℕ. ∀a,b:ℝ^n. ∀c:{c:ℝ^n| ¬(b ≠ c ∧ (¬a-b-c))} .  (a ≠ b 
⇒ a ≠ c)
Proof
Definitions occuring in Statement : 
rv-between: a-b-c
, 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
real-vec-sep: a ≠ b
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
rge: x ≥ y
, 
guard: {T}
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
stable: Stable{P}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
le: A ≤ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
rv-between: a-b-c
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
cand: A c∧ B
Lemmas referenced : 
real-vec-sep_wf, 
set_wf, 
real-vec_wf, 
not_wf, 
rv-between_wf, 
nat_wf, 
int-to-real_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
decidable__le, 
rsub_wf, 
all_wf, 
nat_plus_wf, 
le_wf, 
less_than'_wf, 
sq_stable__rleq, 
false_wf, 
or_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
real-vec-dist-between, 
radd_wf, 
radd-preserves-rleq, 
rminus_wf, 
rmul_wf, 
real-vec-dist-nonneg, 
rleq_functionality, 
req_weakening, 
uiff_transitivity, 
req_transitivity, 
radd_functionality, 
rminus-as-rmul, 
req_inversion, 
rmul-identity1, 
rmul-distrib2, 
radd-assoc, 
rmul_functionality, 
radd-int, 
rmul-zero-both, 
radd-zero-both, 
not-real-vec-sep-iff-eq, 
real-vec-dist_functionality, 
req-vec_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
productEquality, 
natural_numberEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
because_Cache, 
dependent_functionElimination, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberFormation, 
minusEquality, 
unionElimination, 
voidElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionEquality, 
addEquality, 
independent_pairFormation, 
addLevel, 
impliesFunctionality, 
impliesLevelFunctionality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbR{}\^{}n.  \mforall{}c:\{c:\mBbbR{}\^{}n|  \mneg{}(b  \mneq{}  c  \mwedge{}  (\mneg{}a-b-c))\}  .    (a  \mneq{}  b  {}\mRightarrow{}  a  \mneq{}  c)
Date html generated:
2016_10_26-AM-10_38_06
Last ObjectModification:
2016_09_25-AM-01_06_33
Theory : reals
Home
Index