Nuprl Lemma : rv-Tsep

n:ℕ. ∀a,b:ℝ^n. ∀c:{c:ℝ^n| ¬(b ≠ c ∧ a-b-c))} .  (a ≠  a ≠ c)


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b real-vec: ^n nat: all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q real-vec-sep: a ≠ b member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] subtype_rel: A ⊆B rev_implies:  Q uimplies: supposing a rge: x ≥ y guard: {T} rleq: x ≤ y rnonneg: rnonneg(x) stable: Stable{P} decidable: Dec(P) or: P ∨ Q not: ¬A false: False le: A ≤ B sq_stable: SqStable(P) squash: T rv-between: a-b-c uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) cand: c∧ B
Lemmas referenced :  real-vec-sep_wf set_wf real-vec_wf not_wf rv-between_wf nat_wf int-to-real_wf real-vec-dist_wf real_wf rleq_wf rless_functionality_wrt_implies rleq_weakening_equal decidable__le rsub_wf all_wf nat_plus_wf le_wf less_than'_wf sq_stable__rleq false_wf or_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle real-vec-dist-between radd_wf radd-preserves-rleq rminus_wf rmul_wf real-vec-dist-nonneg rleq_functionality req_weakening uiff_transitivity req_transitivity radd_functionality rminus-as-rmul req_inversion rmul-identity1 rmul-distrib2 radd-assoc rmul_functionality radd-int rmul-zero-both radd-zero-both not-real-vec-sep-iff-eq real-vec-dist_functionality req-vec_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality productEquality natural_numberEquality applyEquality setElimination rename setEquality because_Cache dependent_functionElimination independent_isectElimination independent_functionElimination isect_memberFormation minusEquality unionElimination voidElimination productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed imageElimination functionEquality addEquality independent_pairFormation addLevel impliesFunctionality impliesLevelFunctionality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbR{}\^{}n.  \mforall{}c:\{c:\mBbbR{}\^{}n|  \mneg{}(b  \mneq{}  c  \mwedge{}  (\mneg{}a-b-c))\}  .    (a  \mneq{}  b  {}\mRightarrow{}  a  \mneq{}  c)



Date html generated: 2016_10_26-AM-10_38_06
Last ObjectModification: 2016_09_25-AM-01_06_33

Theory : reals


Home Index