Nuprl Lemma : rlog_functionality
∀[x:{x:ℝ| r0 < x} ]. ∀[y:ℝ].  rlog(x) = rlog(y) supposing x = y
Proof
Definitions occuring in Statement : 
rlog: rlog(x), 
rless: x < y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
cand: A c∧ B, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
sq_stable: SqStable(P), 
top: Top, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rlog: rlog(x), 
rfun: I ⟶ℝ, 
ifun: ifun(f;I), 
real-fun: real-fun(f;a;b), 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rmin_strict_ub, 
int-to-real_wf, 
rless-int, 
sq_stable__rless, 
member_rccint_lemma, 
rless_transitivity1, 
rmin_wf, 
rless_wf, 
rleq_wf, 
rmax_wf, 
req_witness, 
rlog_wf, 
rleq_weakening, 
req_wf, 
real_wf, 
set_wf, 
rdiv_wf, 
sq_stable__rleq, 
i-member_wf, 
rccint_wf, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
req_functionality, 
rdiv_functionality, 
req_weakening, 
ifun_wf, 
rccint-icompact, 
rmin-rleq-rmax, 
integral_functionality_endpoints
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
because_Cache, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
imageElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
inrFormation, 
independent_isectElimination, 
productEquality, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
setEquality
Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  <  x\}  ].  \mforall{}[y:\mBbbR{}].    rlog(x)  =  rlog(y)  supposing  x  =  y
Date html generated:
2016_10_26-PM-00_27_16
Last ObjectModification:
2016_09_12-PM-05_44_20
Theory : reals_2
Home
Index