Nuprl Lemma : sp-lub-is-bottom

[A:ℕ ⟶ Sierpinski]. (lub(n.A[n]) = ⊥ ∈ Sierpinski ⇐⇒ ∀n:ℕ(A[n] = ⊥ ∈ Sierpinski))


Proof




Definitions occuring in Statement :  sp-lub: lub(n.A[n]) Sierpinski: Sierpinski Sierpinski-bottom: nat: uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q subtype_rel: A ⊆B uimplies: supposing a nat: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} Sierpinski: Sierpinski prop: rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) cand: c∧ B sp-lub: lub(n.A[n]) Sierpinski-bottom: quotient: x,y:A//B[x; y] or: P ∨ Q decidable: Dec(P) false: False not: ¬A fun-equiv: fun-equiv(X;a,b.E[a; b];f;g) true: True squash: T bfalse: ff ifthenelse: if then else fi  assert: b
Lemmas referenced :  istype-nat Sierpinski_wf sp-lub_wf Sierpinski-bottom_wf subtype-Sierpinski quotient-function-subtype nat_wf set_subtype_base le_wf istype-int int_subtype_base bool_wf iff_wf equal-wf-T-base two-class-equiv-rel fun-equiv-rel squash_wf equiv_rel_squash subtype_rel_self quotient_wf subtype_rel_transitivity fun-equiv_wf equal-Sierpinski-bottom bfalse_wf quotient-member-eq istype-assert decidable__assert assert_wf decidable__not coded-code-pair assert_functionality_wrt_uiff coded-pair_wf iff_weakening_uiff code-pair_wf sp-lub_wf1 equal_wf true_wf istype-universe iff_weakening_equal istype-void
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation lambdaFormation_alt hypothesis extract_by_obid equalityIstype universeIsType sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality_alt applyEquality hypothesisEquality baseClosed sqequalBase equalitySymmetry functionIsType because_Cache productElimination independent_pairEquality dependent_functionElimination axiomEquality functionIsTypeImplies inhabitedIsType independent_isectElimination intEquality natural_numberEquality functionEquality independent_functionElimination closedConclusion equalityTransitivity equalityIsType4 equalityIsType1 productIsType equalityIsType3 pertypeElimination pointwiseFunctionalityForEquality voidElimination unionElimination rename spreadEquality promote_hyp imageElimination instantiate universeEquality imageMemberEquality

Latex:
\mforall{}[A:\mBbbN{}  {}\mrightarrow{}  Sierpinski].  (lub(n.A[n])  =  \mbot{}  \mLeftarrow{}{}\mRightarrow{}  \mforall{}n:\mBbbN{}.  (A[n]  =  \mbot{}))



Date html generated: 2019_10_31-AM-06_36_16
Last ObjectModification: 2018_12_13-PM-03_00_18

Theory : synthetic!topology


Home Index