Nuprl Lemma : sp-lub-is-bottom
∀[A:ℕ ⟶ Sierpinski]. (lub(n.A[n]) = ⊥ ∈ Sierpinski
⇐⇒ ∀n:ℕ. (A[n] = ⊥ ∈ Sierpinski))
Proof
Definitions occuring in Statement :
sp-lub: lub(n.A[n])
,
Sierpinski: Sierpinski
,
Sierpinski-bottom: ⊥
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
function: x:A ⟶ B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
nat: ℕ
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
guard: {T}
,
Sierpinski: Sierpinski
,
prop: ℙ
,
rev_uimplies: rev_uimplies(P;Q)
,
uiff: uiff(P;Q)
,
cand: A c∧ B
,
sp-lub: lub(n.A[n])
,
Sierpinski-bottom: ⊥
,
quotient: x,y:A//B[x; y]
,
or: P ∨ Q
,
decidable: Dec(P)
,
false: False
,
not: ¬A
,
fun-equiv: fun-equiv(X;a,b.E[a; b];f;g)
,
true: True
,
squash: ↓T
,
bfalse: ff
,
ifthenelse: if b then t else f fi
,
assert: ↑b
Lemmas referenced :
istype-nat,
Sierpinski_wf,
sp-lub_wf,
Sierpinski-bottom_wf,
subtype-Sierpinski,
quotient-function-subtype,
nat_wf,
set_subtype_base,
le_wf,
istype-int,
int_subtype_base,
bool_wf,
iff_wf,
equal-wf-T-base,
two-class-equiv-rel,
fun-equiv-rel,
squash_wf,
equiv_rel_squash,
subtype_rel_self,
quotient_wf,
subtype_rel_transitivity,
fun-equiv_wf,
equal-Sierpinski-bottom,
bfalse_wf,
quotient-member-eq,
istype-assert,
decidable__assert,
assert_wf,
decidable__not,
coded-code-pair,
assert_functionality_wrt_uiff,
coded-pair_wf,
iff_weakening_uiff,
code-pair_wf,
sp-lub_wf1,
equal_wf,
true_wf,
istype-universe,
iff_weakening_equal,
istype-void
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
independent_pairFormation,
lambdaFormation_alt,
hypothesis,
extract_by_obid,
equalityIstype,
universeIsType,
sqequalHypSubstitution,
isectElimination,
thin,
sqequalRule,
lambdaEquality_alt,
applyEquality,
hypothesisEquality,
baseClosed,
sqequalBase,
equalitySymmetry,
functionIsType,
because_Cache,
productElimination,
independent_pairEquality,
dependent_functionElimination,
axiomEquality,
functionIsTypeImplies,
inhabitedIsType,
independent_isectElimination,
intEquality,
natural_numberEquality,
functionEquality,
independent_functionElimination,
closedConclusion,
equalityTransitivity,
equalityIsType4,
equalityIsType1,
productIsType,
equalityIsType3,
pertypeElimination,
pointwiseFunctionalityForEquality,
voidElimination,
unionElimination,
rename,
spreadEquality,
promote_hyp,
imageElimination,
instantiate,
universeEquality,
imageMemberEquality
Latex:
\mforall{}[A:\mBbbN{} {}\mrightarrow{} Sierpinski]. (lub(n.A[n]) = \mbot{} \mLeftarrow{}{}\mRightarrow{} \mforall{}n:\mBbbN{}. (A[n] = \mbot{}))
Date html generated:
2019_10_31-AM-06_36_16
Last ObjectModification:
2018_12_13-PM-03_00_18
Theory : synthetic!topology
Home
Index