Nuprl Lemma : C_LVALUE-induction
∀[P:C_LVALUE() ⟶ ℙ]
  ((∀loc:C_LOCATION(). P[LV_Ground(loc)])
  ⇒ (∀lval:C_LVALUE(). ∀idx:ℤ.  (P[lval] ⇒ P[LV_Index(lval;idx)]))
  ⇒ (∀lval:C_LVALUE(). ∀comp:Atom.  (P[lval] ⇒ P[LV_Scomp(lval;comp)]))
  ⇒ {∀v:C_LVALUE(). P[v]})
Proof
Definitions occuring in Statement : 
LV_Scomp: LV_Scomp(lval;comp), 
LV_Index: LV_Index(lval;idx), 
LV_Ground: LV_Ground(loc), 
C_LVALUE: C_LVALUE(), 
C_LOCATION: C_LOCATION(), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
int: ℤ, 
atom: Atom
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
false: False, 
ext-eq: A ≡ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
LV_Ground: LV_Ground(loc), 
C_LVALUE_size: C_LVALUE_size(p), 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
bnot: ¬bb, 
assert: ↑b, 
LV_Index: LV_Index(lval;idx), 
cand: A c∧ B, 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
LV_Scomp: LV_Scomp(lval;comp)
Lemmas referenced : 
LV_Ground_wf, 
C_LOCATION_wf, 
LV_Index_wf, 
LV_Scomp_wf, 
int_seg_wf, 
uall_wf, 
lelt_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
decidable__le, 
subtract_wf, 
int_formula_prop_wf, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties, 
neg_assert_of_eq_atom, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
atom_subtype_base, 
subtype_base_sq, 
assert_of_eq_atom, 
eqtt_to_assert, 
bool_wf, 
eq_atom_wf, 
C_LVALUE-ext, 
less_than'_wf, 
nat_wf, 
C_LVALUE_size_wf, 
le_wf, 
isect_wf, 
C_LVALUE_wf, 
all_wf, 
uniform-comp-nat-induction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
setElimination, 
rename, 
independent_functionElimination, 
introduction, 
productElimination, 
independent_pairEquality, 
dependent_functionElimination, 
voidElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
hypothesis_subsumption, 
tokenEquality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
instantiate, 
cumulativity, 
atomEquality, 
dependent_pairFormation, 
setEquality, 
intEquality, 
natural_numberEquality, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
imageElimination, 
equalityEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[P:C\_LVALUE()  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}loc:C\_LOCATION().  P[LV\_Ground(loc)])
    {}\mRightarrow{}  (\mforall{}lval:C\_LVALUE().  \mforall{}idx:\mBbbZ{}.    (P[lval]  {}\mRightarrow{}  P[LV\_Index(lval;idx)]))
    {}\mRightarrow{}  (\mforall{}lval:C\_LVALUE().  \mforall{}comp:Atom.    (P[lval]  {}\mRightarrow{}  P[LV\_Scomp(lval;comp)]))
    {}\mRightarrow{}  \{\mforall{}v:C\_LVALUE().  P[v]\})
 Date html generated: 
2016_05_16-AM-08_47_37
 Last ObjectModification: 
2016_01_17-AM-09_43_29
Theory : C-semantics
Home
Index