Nuprl Lemma : minus_mono_wrt_le

[i,j:ℤ].  uiff(i ≥ ;(-i) ≤ (-j))


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] ge: i ≥  le: A ≤ B minus: -n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a le: A ≤ B not: ¬A implies:  Q false: False prop: ge: i ≥  all: x:A. B[x] subtype_rel: A ⊆B top: Top subtract: m nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  le-add-cancel minus-minus minus-add condition-implies-le not-ge-2 false_wf int_subtype_base add-is-int-iff decidable__le le-add-cancel-alt mul-commutes mul-distributes less_than_wf omega-shadow add-zero mul-associates not-le-2 zero-add zero-mul mul-distributes-right two-mul add-mul-special add-associates add-commutes add-swap one-mul minus-one-mul-top le_reflexive subtract_wf add_functionality_wrt_le le_wf ge_wf less_than'_wf minus-one-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_pairEquality lambdaEquality dependent_functionElimination because_Cache minusEquality axiomEquality equalityTransitivity equalitySymmetry voidElimination isect_memberEquality intEquality multiplyEquality natural_numberEquality independent_isectElimination applyEquality voidEquality addEquality dependent_set_memberEquality imageMemberEquality baseClosed independent_functionElimination unionElimination baseApply closedConclusion lambdaFormation

Latex:
\mforall{}[i,j:\mBbbZ{}].    uiff(i  \mgeq{}  j  ;(-i)  \mleq{}  (-j))



Date html generated: 2016_05_13-PM-03_40_16
Last ObjectModification: 2016_01_14-PM-06_39_01

Theory : arithmetic


Home Index