Nuprl Lemma : comp_nat_ind_a

[P:ℕ ⟶ ℙ{k}]. ((∀i:ℕ((∀j:ℕP[j] supposing j < i)  P[i]))  {∀i:ℕP[i]})


Proof




Definitions occuring in Statement :  nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] uimplies: supposing a nat: so_apply: x[s] subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) sq_stable: SqStable(P) squash: T subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True nat_plus: +
Lemmas referenced :  nat_wf all_wf isect_wf less_than_wf subtype_rel_self decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf decidable__lt not-lt-2 add-mul-special zero-mul nat_ind_a subtract_wf nat_plus_wf less_than_transitivity1 less_than_irreflexivity less-iff-le minus-minus member-less_than
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid hypothesis thin instantiate sqequalHypSubstitution isectElimination cumulativity lambdaEquality functionEquality setElimination rename hypothesisEquality applyEquality universeEquality because_Cache Error :functionIsType,  Error :universeIsType,  dependent_functionElimination dependent_set_memberEquality addEquality natural_numberEquality unionElimination independent_pairFormation voidElimination productElimination independent_functionElimination independent_isectElimination imageMemberEquality baseClosed imageElimination isect_memberEquality voidEquality intEquality minusEquality multiplyEquality

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}\{k\}].  ((\mforall{}i:\mBbbN{}.  ((\mforall{}j:\mBbbN{}.  P[j]  supposing  j  <  i)  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  \{\mforall{}i:\mBbbN{}.  P[i]\})



Date html generated: 2019_06_20-AM-11_28_00
Last ObjectModification: 2018_09_26-AM-10_58_11

Theory : call!by!value_2


Home Index