Nuprl Lemma : bar-val-diverge

[T:Type]. ∀[n:ℕ].  (bar-val(n;diverge()) inr ⋅ )


Proof




Definitions occuring in Statement :  diverge: diverge() bar-val: bar-val(n;x) nat: it: uall: [x:A]. B[x] inr: inr  universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: bar-val: bar-val(n;x) diverge: diverge() eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination sqequalAxiom unionElimination independent_pairFormation productElimination addEquality applyEquality isect_memberEquality voidEquality intEquality minusEquality because_Cache equalityElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].    (bar-val(n;diverge())  \msim{}  inr  \mcdot{}  )



Date html generated: 2017_04_14-AM-07_46_03
Last ObjectModification: 2017_02_27-PM-03_16_28

Theory : co-recursion


Home Index