Nuprl Lemma : kripke2b-baire-seq_wf
∀[a:ℕ ⟶ ℕ]. ∀[x:ℕ]. ∀[F:∀b:{b:ℕ ⟶ ℕ| a = b ∈ (ℕx ⟶ ℕ)} . ∃n:ℕ. ((b n) ≥ ((a x) + 1) )].
  (kripke2b-baire-seq(a;x;F) ∈ (ℕ ⟶ 𝔹) ⟶ ℕ)
Proof
Definitions occuring in Statement : 
kripke2b-baire-seq: kripke2b-baire-seq(a;x;F)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
kripke2b-baire-seq: kripke2b-baire-seq(a;x;F)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
ge: i ≥ j 
, 
prop: ℙ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
eq-finite-seqs_wf, 
bool_wf, 
eqtt_to_assert, 
min-inc-seq_wf, 
pi1_wf, 
ge_wf, 
exists_wf, 
nat_wf, 
cantor2baire_wf, 
add_nat_wf, 
false_wf, 
le_wf, 
nat_properties, 
decidable__le, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
all_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
subtype_rel_self, 
eq-finite-seqs-implies-eq-upto
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
setElimination, 
rename, 
addEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_functionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_functionElimination, 
instantiate, 
cumulativity, 
functionEquality, 
axiomEquality, 
setEquality
Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[x:\mBbbN{}].  \mforall{}[F:\mforall{}b:\{b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}|  a  =  b\}  .  \mexists{}n:\mBbbN{}.  ((b  n)  \mgeq{}  ((a  x)  +  1)  )].
    (kripke2b-baire-seq(a;x;F)  \mmember{}  (\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{})
Date html generated:
2017_09_29-PM-06_09_09
Last ObjectModification:
2017_04_22-PM-05_37_55
Theory : continuity
Home
Index