Nuprl Lemma : kripke2b-baire-seq_wf

[a:ℕ ⟶ ℕ]. ∀[x:ℕ]. ∀[F:∀b:{b:ℕ ⟶ ℕb ∈ (ℕx ⟶ ℕ)} . ∃n:ℕ((b n) ≥ ((a x) 1) )].
  (kripke2b-baire-seq(a;x;F) ∈ (ℕ ⟶ 𝔹) ⟶ ℕ)


Proof




Definitions occuring in Statement :  kripke2b-baire-seq: kripke2b-baire-seq(a;x;F) int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] ge: i ≥  all: x:A. B[x] exists: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T kripke2b-baire-seq: kripke2b-baire-seq(a;x;F) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: ge: i ≥  prop: so_apply: x[s] exists: x:A. B[x] le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  eq-finite-seqs_wf bool_wf eqtt_to_assert min-inc-seq_wf pi1_wf ge_wf exists_wf nat_wf cantor2baire_wf add_nat_wf false_wf le_wf nat_properties decidable__le add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot all_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat subtype_rel_self eq-finite-seqs-implies-eq-upto
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin functionExtensionality applyEquality hypothesisEquality because_Cache hypothesis lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination setElimination rename addEquality natural_numberEquality dependent_set_memberEquality independent_pairFormation equalityTransitivity equalitySymmetry applyLambdaEquality dependent_functionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination instantiate cumulativity functionEquality axiomEquality setEquality

Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[x:\mBbbN{}].  \mforall{}[F:\mforall{}b:\{b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}|  a  =  b\}  .  \mexists{}n:\mBbbN{}.  ((b  n)  \mgeq{}  ((a  x)  +  1)  )].
    (kripke2b-baire-seq(a;x;F)  \mmember{}  (\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{})



Date html generated: 2017_09_29-PM-06_09_09
Last ObjectModification: 2017_04_22-PM-05_37_55

Theory : continuity


Home Index