Nuprl Lemma : kripke2b-baire-seq_wf
∀[a:ℕ ⟶ ℕ]. ∀[x:ℕ]. ∀[F:∀b:{b:ℕ ⟶ ℕ| a = b ∈ (ℕx ⟶ ℕ)} . ∃n:ℕ. ((b n) ≥ ((a x) + 1) )].
(kripke2b-baire-seq(a;x;F) ∈ (ℕ ⟶ 𝔹) ⟶ ℕ)
Proof
Definitions occuring in Statement :
kripke2b-baire-seq: kripke2b-baire-seq(a;x;F)
,
int_seg: {i..j-}
,
nat: ℕ
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
ge: i ≥ j
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
apply: f a
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
kripke2b-baire-seq: kripke2b-baire-seq(a;x;F)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
ge: i ≥ j
,
prop: ℙ
,
so_apply: x[s]
,
exists: ∃x:A. B[x]
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
guard: {T}
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
Lemmas referenced :
eq-finite-seqs_wf,
bool_wf,
eqtt_to_assert,
min-inc-seq_wf,
pi1_wf,
ge_wf,
exists_wf,
nat_wf,
cantor2baire_wf,
add_nat_wf,
false_wf,
le_wf,
nat_properties,
decidable__le,
add-is-int-iff,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
itermAdd_wf,
intformeq_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_wf,
equal_wf,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
all_wf,
int_seg_wf,
subtype_rel_dep_function,
int_seg_subtype_nat,
subtype_rel_self,
eq-finite-seqs-implies-eq-upto
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lambdaEquality,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
functionExtensionality,
applyEquality,
hypothesisEquality,
because_Cache,
hypothesis,
lambdaFormation,
unionElimination,
equalityElimination,
productElimination,
independent_isectElimination,
setElimination,
rename,
addEquality,
natural_numberEquality,
dependent_set_memberEquality,
independent_pairFormation,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
dependent_functionElimination,
pointwiseFunctionality,
promote_hyp,
baseApply,
closedConclusion,
baseClosed,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
independent_functionElimination,
instantiate,
cumulativity,
functionEquality,
axiomEquality,
setEquality
Latex:
\mforall{}[a:\mBbbN{} {}\mrightarrow{} \mBbbN{}]. \mforall{}[x:\mBbbN{}]. \mforall{}[F:\mforall{}b:\{b:\mBbbN{} {}\mrightarrow{} \mBbbN{}| a = b\} . \mexists{}n:\mBbbN{}. ((b n) \mgeq{} ((a x) + 1) )].
(kripke2b-baire-seq(a;x;F) \mmember{} (\mBbbN{} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbN{})
Date html generated:
2017_09_29-PM-06_09_09
Last ObjectModification:
2017_04_22-PM-05_37_55
Theory : continuity
Home
Index