Nuprl Lemma : member-union-list2

[T:Type]. ∀eq:EqDecider(T). ∀ll:T List List. ∀x:T.  ((x ∈ union-list2(eq;ll)) ⇐⇒ ∃l:T List. ((l ∈ ll) ∧ (x ∈ l)))


Proof




Definitions occuring in Statement :  union-list2: union-list2(eq;ll) l_member: (x ∈ l) list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] implies:  Q union-list2: union-list2(eq;ll) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] iff: ⇐⇒ Q uimplies: supposing a not: ¬A false: False rev_implies:  Q exists: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  cand: c∧ B or: P ∨ Q bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  list_induction list_wf all_wf iff_wf l_member_wf union-list2_wf exists_wf list_ind_nil_lemma list_ind_cons_lemma deq_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse null_wf bool_wf eqtt_to_assert assert_of_null or_wf equal_wf and_wf cons_member cons_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base member-union l-union_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality productEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality rename because_Cache universeEquality independent_pairFormation independent_isectElimination equalityTransitivity equalitySymmetry productElimination unionElimination equalityElimination dependent_pairFormation inlFormation addLevel hyp_replacement dependent_set_memberEquality applyLambdaEquality setElimination levelHypothesis impliesFunctionality existsFunctionality andLevelFunctionality existsLevelFunctionality promote_hyp instantiate baseClosed inrFormation

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}ll:T  List  List.  \mforall{}x:T.
        ((x  \mmember{}  union-list2(eq;ll))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}l:T  List.  ((l  \mmember{}  ll)  \mwedge{}  (x  \mmember{}  l)))



Date html generated: 2017_04_17-AM-09_10_01
Last ObjectModification: 2017_02_27-PM-05_18_53

Theory : decidable!equality


Home Index