Nuprl Lemma : fset-minimals-singleton
∀[T:Type]
  ∀eq:EqDecider(T). ∀x:fset(T).  (fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys); {x}) = {x} ∈ fset(fset(T)))
Proof
Definitions occuring in Statement : 
fset-minimals: fset-minimals(x,y.less[x; y]; s)
, 
f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys)
, 
fset-singleton: {x}
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
fset-all: fset-all(s;x.P[x])
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
f-proper-subset: xs ⊆≠ ys
, 
false: False
Lemmas referenced : 
fset_wf, 
deq_wf, 
deq-fset_wf, 
fset-minimals_wf, 
f-proper-subset-dec_wf, 
fset-singleton_wf, 
equal_wf, 
fset-all_wf, 
bnot_wf, 
assert_witness, 
fset-null_wf, 
fset-filter_wf, 
fset-member_wf, 
uiff_wf, 
fset-extensionality, 
fset-member_witness, 
iff_transitivity, 
iff_weakening_uiff, 
member-fset-minimals, 
member-fset-singleton, 
fset-all-iff, 
assert_wf, 
not_wf, 
f-proper-subset_wf, 
assert_of_bnot, 
assert-f-proper-subset-dec
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
because_Cache, 
universeEquality, 
independent_pairFormation, 
productElimination, 
productEquality, 
independent_pairEquality, 
independent_functionElimination, 
independent_isectElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
impliesFunctionality, 
hyp_replacement, 
applyLambdaEquality, 
voidElimination
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}x:fset(T).    (fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys);  \{x\})  =  \{x\})
Date html generated:
2017_04_17-AM-09_23_35
Last ObjectModification:
2017_02_27-PM-05_25_03
Theory : finite!sets
Home
Index