Nuprl Lemma : fset-minimals-singleton
∀[T:Type]
∀eq:EqDecider(T). ∀x:fset(T). (fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys); {x}) = {x} ∈ fset(fset(T)))
Proof
Definitions occuring in Statement :
fset-minimals: fset-minimals(x,y.less[x; y]; s)
,
f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys)
,
fset-singleton: {x}
,
fset: fset(T)
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
fset-all: fset-all(s;x.P[x])
,
implies: P
⇒ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
not: ¬A
,
f-proper-subset: xs ⊆≠ ys
,
false: False
Lemmas referenced :
fset_wf,
deq_wf,
deq-fset_wf,
fset-minimals_wf,
f-proper-subset-dec_wf,
fset-singleton_wf,
equal_wf,
fset-all_wf,
bnot_wf,
assert_witness,
fset-null_wf,
fset-filter_wf,
fset-member_wf,
uiff_wf,
fset-extensionality,
fset-member_witness,
iff_transitivity,
iff_weakening_uiff,
member-fset-minimals,
member-fset-singleton,
fset-all-iff,
assert_wf,
not_wf,
f-proper-subset_wf,
assert_of_bnot,
assert-f-proper-subset-dec
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
hypothesis,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
sqequalRule,
lambdaEquality,
dependent_functionElimination,
axiomEquality,
because_Cache,
universeEquality,
independent_pairFormation,
productElimination,
productEquality,
independent_pairEquality,
independent_functionElimination,
independent_isectElimination,
isect_memberEquality,
equalityTransitivity,
equalitySymmetry,
addLevel,
impliesFunctionality,
hyp_replacement,
applyLambdaEquality,
voidElimination
Latex:
\mforall{}[T:Type]
\mforall{}eq:EqDecider(T). \mforall{}x:fset(T). (fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys); \{x\}) = \{x\})
Date html generated:
2017_04_17-AM-09_23_35
Last ObjectModification:
2017_02_27-PM-05_25_03
Theory : finite!sets
Home
Index