Nuprl Lemma : fset-minimals-singleton

[T:Type]
  ∀eq:EqDecider(T). ∀x:fset(T).  (fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys); {x}) {x} ∈ fset(fset(T)))


Proof




Definitions occuring in Statement :  fset-minimals: fset-minimals(x,y.less[x; y]; s) f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys) fset-singleton: {x} fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] fset-all: fset-all(s;x.P[x]) implies:  Q iff: ⇐⇒ Q rev_implies:  Q not: ¬A f-proper-subset: xs ⊆≠ ys false: False
Lemmas referenced :  fset_wf deq_wf deq-fset_wf fset-minimals_wf f-proper-subset-dec_wf fset-singleton_wf equal_wf fset-all_wf bnot_wf assert_witness fset-null_wf fset-filter_wf fset-member_wf uiff_wf fset-extensionality fset-member_witness iff_transitivity iff_weakening_uiff member-fset-minimals member-fset-singleton fset-all-iff assert_wf not_wf f-proper-subset_wf assert_of_bnot assert-f-proper-subset-dec
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination axiomEquality because_Cache universeEquality independent_pairFormation productElimination productEquality independent_pairEquality independent_functionElimination independent_isectElimination isect_memberEquality equalityTransitivity equalitySymmetry addLevel impliesFunctionality hyp_replacement applyLambdaEquality voidElimination

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}x:fset(T).    (fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys);  \{x\})  =  \{x\})



Date html generated: 2017_04_17-AM-09_23_35
Last ObjectModification: 2017_02_27-PM-05_25_03

Theory : finite!sets


Home Index