Nuprl Lemma : uniform_nat_measure_ind

[T:Type]. ∀[measure:T ⟶ ℕ]. ∀[P:T ⟶ ℙ].
  ((∀[i:T]. ((∀[j:{j:T| measure[j] < measure[i]} ]. P[j])  P[i]))  (∀[i:T]. P[i]))


Proof




Definitions occuring in Statement :  nat: less_than: a < b uall: [x:A]. B[x] prop: so_apply: x[s] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: nat: false: False ge: i ≥  guard: {T} uimplies: supposing a exists: x:A. B[x] le: A ≤ B and: P ∧ Q decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m top: Top less_than': less_than'(a;b) true: True sq_type: SQType(T)
Lemmas referenced :  le_reflexive uall_wf less_than_wf nat_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf le_wf subtype_rel-equal base_wf equal_wf set_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel not-le-2 subtype_base_sq int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction lambdaEquality cut isect_memberEquality hypothesis sqequalHypSubstitution dependent_functionElimination thin applyEquality functionExtensionality hypothesisEquality cumulativity independent_functionElimination extract_by_obid because_Cache sqequalRule equalityTransitivity equalitySymmetry isectElimination functionEquality setEquality setElimination rename universeEquality lambdaFormation intWeakElimination natural_numberEquality independent_isectElimination voidElimination axiomEquality dependent_pairFormation sqequalIntensionalEquality productElimination promote_hyp unionElimination independent_pairFormation addEquality voidEquality intEquality minusEquality applyLambdaEquality instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[measure:T  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}[i:T].  ((\mforall{}[j:\{j:T|  measure[j]  <  measure[i]\}  ].  P[j])  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}[i:T].  P[i]))



Date html generated: 2017_04_14-AM-07_32_45
Last ObjectModification: 2017_02_27-PM-03_07_22

Theory : int_1


Home Index