Nuprl Lemma : uniform_nat_measure_ind
∀[T:Type]. ∀[measure:T ⟶ ℕ]. ∀[P:T ⟶ ℙ].
  ((∀[i:T]. ((∀[j:{j:T| measure[j] < measure[i]} ]. P[j]) 
⇒ P[i])) 
⇒ (∀[i:T]. P[i]))
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
sq_type: SQType(T)
Lemmas referenced : 
le_reflexive, 
uall_wf, 
less_than_wf, 
nat_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
le_wf, 
subtype_rel-equal, 
base_wf, 
equal_wf, 
set_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
not-le-2, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
lambdaEquality, 
cut, 
isect_memberEquality, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
independent_functionElimination, 
extract_by_obid, 
because_Cache, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
functionEquality, 
setEquality, 
setElimination, 
rename, 
universeEquality, 
lambdaFormation, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
voidElimination, 
axiomEquality, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
productElimination, 
promote_hyp, 
unionElimination, 
independent_pairFormation, 
addEquality, 
voidEquality, 
intEquality, 
minusEquality, 
applyLambdaEquality, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}[measure:T  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}[i:T].  ((\mforall{}[j:\{j:T|  measure[j]  <  measure[i]\}  ].  P[j])  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}[i:T].  P[i]))
Date html generated:
2017_04_14-AM-07_32_45
Last ObjectModification:
2017_02_27-PM-03_07_22
Theory : int_1
Home
Index