Nuprl Lemma : int-prod-factor
∀[n:ℕ]. ∀[f,g:ℕn ⟶ ℤ].  (Π(f[x] * g[x] | x < n) = (Π(f[x] | x < n) * Π(g[x] | x < n)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
int-prod: Π(f[x] | x < k), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
multiply: n * m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
top: Top, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
prop: ℙ, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
true: True, 
ge: i ≥ j , 
int-prod: Π(f[x] | x < k), 
lt_int: i <z j, 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
primrec: primrec(n;b;c), 
less_than: a < b, 
less_than': less_than'(a;b), 
has-value: (a)↓
Lemmas referenced : 
int_seg_wf, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
lelt_wf, 
subtract_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
int-prod_wf, 
le_wf, 
nat_wf, 
nat_properties, 
ge_wf, 
less_than_wf, 
primrec-unroll, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
top_wf, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
value-type-has-value, 
int-value-type, 
primrec_wf, 
itermAdd_wf, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
natural_numberEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
intEquality, 
because_Cache, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
sqequalRule, 
multiplyEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberFormation, 
intWeakElimination, 
lambdaFormation, 
axiomEquality, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
addEquality, 
minusEquality, 
lessCases, 
sqequalAxiom, 
callbyvalueReduce
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (\mPi{}(f[x]  *  g[x]  |  x  <  n)  =  (\mPi{}(f[x]  |  x  <  n)  *  \mPi{}(g[x]  |  x  <  n)))
Date html generated:
2018_05_21-PM-00_29_45
Last ObjectModification:
2018_05_19-AM-06_54_57
Theory : int_2
Home
Index