Nuprl Lemma : int-prod-factor

[n:ℕ]. ∀[f,g:ℕn ⟶ ℤ].  (f[x] g[x] x < n) (f[x] x < n) * Π(g[x] x < n)) ∈ ℤ)


Proof




Definitions occuring in Statement :  int-prod: Π(f[x] x < k) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T top: Top uall: [x:A]. B[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: nat: so_lambda: λ2x.t[x] true: True ge: i ≥  int-prod: Π(f[x] x < k) lt_int: i <j subtract: m ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q primrec: primrec(n;b;c) less_than: a < b less_than': less_than'(a;b) has-value: (a)↓
Lemmas referenced :  int_seg_wf decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf subtract_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma decidable__le intformle_wf int_formula_prop_le_lemma int-prod_wf le_wf nat_wf nat_properties ge_wf less_than_wf primrec-unroll lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot squash_wf true_wf subtype_rel_self iff_weakening_equal top_wf itermMultiply_wf int_term_value_mul_lemma value-type-has-value int-value-type primrec_wf itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity natural_numberEquality isect_memberEquality voidElimination voidEquality functionEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis intEquality because_Cache hypothesisEquality lambdaEquality applyEquality functionExtensionality setElimination rename dependent_set_memberEquality productElimination independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality sqequalRule multiplyEquality equalityTransitivity equalitySymmetry isect_memberFormation intWeakElimination lambdaFormation axiomEquality equalityElimination promote_hyp instantiate cumulativity imageElimination universeEquality imageMemberEquality baseClosed addEquality minusEquality lessCases sqequalAxiom callbyvalueReduce

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (\mPi{}(f[x]  *  g[x]  |  x  <  n)  =  (\mPi{}(f[x]  |  x  <  n)  *  \mPi{}(g[x]  |  x  <  n)))



Date html generated: 2018_05_21-PM-00_29_45
Last ObjectModification: 2018_05_19-AM-06_54_57

Theory : int_2


Home Index