Nuprl Lemma : mul-div-bounds

[a,b:ℤ]. ∀[m:ℤ-o].  (|(a (b ÷ m)) (a ÷ m)| ≤ (|a| |b|))


Proof




Definitions occuring in Statement :  absval: |i| int_nzero: -o uall: [x:A]. B[x] le: A ≤ B divide: n ÷ m multiply: m subtract: m add: m int:
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) ge: i ≥  less_than: a < b le: A ≤ B sq_type: SQType(T) uiff: uiff(P;Q) or: P ∨ Q decidable: Dec(P) rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True nat: squash: T subtype_rel: A ⊆B prop: and: P ∧ Q top: Top all: x:A. B[x] false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A int_nzero: -o nequal: a ≠ b ∈  uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  le_weakening add_functionality_wrt_le int-triangle-inequality2 le_transitivity le_functionality nat_properties equal-wf-base mul_preserves_le int_formula_prop_less_lemma int_formula_prop_le_lemma intformless_wf intformle_wf decidable__le rem_bounds_absval int_nzero_wf less_than'_wf false_wf int_term_value_add_lemma int_term_value_subtract_lemma int_term_value_mul_lemma itermAdd_wf itermSubtract_wf itermMultiply_wf multiply-is-int-iff add-is-int-iff decidable__equal_int int_subtype_base subtype_base_sq iff_weakening_equal nat_wf absval_mul true_wf squash_wf le_wf equal-wf-T-base absval_nat_plus int_formula_prop_wf int_formula_prop_not_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformnot_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat int_nzero_properties subtract_wf absval_wf mul_cancel_in_le mul_preserves_eq div_rem_sum
Rules used in proof :  applyLambdaEquality remainderEquality axiomEquality independent_pairEquality closedConclusion baseApply promote_hyp pointwiseFunctionality unionElimination cumulativity instantiate productElimination universeEquality imageMemberEquality imageElimination baseClosed addEquality applyEquality independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation natural_numberEquality lambdaFormation rename setElimination divideEquality multiplyEquality independent_isectElimination hypothesis equalitySymmetry equalityTransitivity because_Cache hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[m:\mBbbZ{}\msupminus{}\msupzero{}].    (|(a  *  (b  \mdiv{}  m))  -  b  *  (a  \mdiv{}  m)|  \mleq{}  (|a|  +  |b|))



Date html generated: 2017_09_29-PM-05_57_31
Last ObjectModification: 2017_09_06-PM-01_47_38

Theory : int_2


Home Index