Nuprl Lemma : hd-reverse-is-last
∀[T:Type]. ∀[L:T List].  hd(rev(L)) = last(L) ∈ T supposing 0 < ||L||
Proof
Definitions occuring in Statement : 
last: last(L), 
hd: hd(l), 
length: ||as||, 
reverse: rev(as), 
list: T List, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
last: last(L), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
top: Top, 
subtract: n - m, 
squash: ↓T, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
true: True
Lemmas referenced : 
list_wf, 
le-add-cancel-alt, 
zero-mul, 
add-mul-special, 
not-lt-2, 
decidable__lt, 
le-add-cancel, 
add_functionality_wrt_le, 
add-swap, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-le-2, 
subtract_wf, 
decidable__le, 
less_than_wf, 
le_wf, 
and_wf, 
squash_wf, 
select_wf, 
add-commutes, 
add-zero, 
add-associates, 
minus-zero, 
select0, 
reverse_wf, 
length_wf, 
lelt_wf, 
length-reverse, 
false_wf, 
select-reverse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
lambdaFormation, 
hypothesis, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
minusEquality, 
because_Cache, 
addEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
lambdaEquality, 
imageElimination, 
productElimination, 
independent_isectElimination, 
intEquality, 
dependent_functionElimination, 
unionElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    hd(rev(L))  =  last(L)  supposing  0  <  ||L||
Date html generated:
2016_05_14-AM-06_41_31
Last ObjectModification:
2016_01_14-PM-08_19_46
Theory : list_0
Home
Index