Nuprl Lemma : select-reverse
∀[T:Type]. ∀[L:T List]. ∀[i:ℕ||rev(L)||]. (rev(L)[i] = L[||L|| - 1 - i] ∈ T)
Proof
Definitions occuring in Statement :
select: L[n]
,
length: ||as||
,
reverse: rev(as)
,
list: T List
,
int_seg: {i..j-}
,
uall: ∀[x:A]. B[x]
,
subtract: n - m
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
reverse: rev(as)
,
top: Top
,
squash: ↓T
,
prop: ℙ
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
le: A ≤ B
,
less_than: a < b
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
true: True
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
or: P ∨ Q
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
,
select: L[n]
,
nil: []
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
subtract: n - m
,
nat_plus: ℕ+
,
less_than': less_than'(a;b)
,
decidable: Dec(P)
Lemmas referenced :
length-reverse,
equal_wf,
squash_wf,
true_wf,
select-rev-append,
nil_wf,
length-nil,
add-zero,
length_wf,
lelt_wf,
select_wf,
subtract_wf,
non_neg_length,
length_wf_nat,
nat_wf,
set_subtype_base,
le_wf,
int_subtype_base,
iff_weakening_equal,
lt_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_lt_int,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
less_than_wf,
stuck-spread,
base_wf,
int_seg_wf,
reverse_wf,
add-associates,
minus-one-mul,
add-swap,
add-commutes,
less-iff-le,
add_functionality_wrt_le,
le_reflexive,
minus-one-mul-top,
one-mul,
add-mul-special,
two-mul,
mul-distributes-right,
zero-mul,
not-le-2,
minus-zero,
zero-add,
omega-shadow,
mul-distributes,
mul-associates,
le-add-cancel,
not-lt-2,
minus-add,
minus-minus,
int_seg_properties,
nat_properties,
decidable__le,
decidable__lt
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
sqequalRule,
extract_by_obid,
isectElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
applyEquality,
lambdaEquality,
imageElimination,
hypothesisEquality,
equalityTransitivity,
equalitySymmetry,
because_Cache,
cumulativity,
setElimination,
rename,
dependent_set_memberEquality,
productElimination,
independent_pairFormation,
addEquality,
natural_numberEquality,
independent_isectElimination,
lambdaFormation,
dependent_pairFormation,
sqequalIntensionalEquality,
intEquality,
dependent_functionElimination,
independent_functionElimination,
promote_hyp,
imageMemberEquality,
baseClosed,
universeEquality,
unionElimination,
equalityElimination,
instantiate,
axiomEquality,
multiplyEquality,
minusEquality
Latex:
\mforall{}[T:Type]. \mforall{}[L:T List]. \mforall{}[i:\mBbbN{}||rev(L)||]. (rev(L)[i] = L[||L|| - 1 - i])
Date html generated:
2017_04_14-AM-08_40_31
Last ObjectModification:
2017_02_27-PM-03_31_04
Theory : list_0
Home
Index