Nuprl Lemma : select-rev-append
∀[T:Type]. ∀[L,bs:T List]. ∀[i:ℕ||L|| + ||bs||].
  (rev(L) + bs[i] = if i <z ||L|| then L[||L|| - 1 - i] else bs[i - ||L||] fi  ∈ T)
Proof
Definitions occuring in Statement : 
select: L[n], 
length: ||as||, 
rev-append: rev(as) + bs, 
list: T List, 
int_seg: {i..j-}, 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
uall: ∀[x:A]. B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
squash: ↓T, 
top: Top, 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
so_apply: x[s], 
prop: ℙ, 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
select: L[n], 
nil: [], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
subtract: n - m, 
cand: A c∧ B, 
gt: i > j, 
le: A ≤ B, 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than': less_than'(a;b), 
true: True, 
less_than: a < b, 
nat_plus: ℕ+
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
int_seg_wf, 
length_wf, 
equal_wf, 
select_wf, 
rev-append_wf, 
sq_stable__le, 
length-rev-append, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
subtract_wf, 
non_neg_length, 
length_wf_nat, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
length_of_nil_lemma, 
rev_app_nil_lemma, 
stuck-spread, 
base_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
squash_wf, 
minus-zero, 
add-zero, 
not-gt-2, 
decidable__lt, 
false_wf, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add-associates, 
zero-add, 
add_functionality_wrt_le, 
le-add-cancel, 
length_of_cons_lemma, 
rev_app_cons_lemma, 
true_wf, 
cons_wf, 
lelt_wf, 
iff_weakening_equal, 
select_cons_tl, 
le_reflexive, 
one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
not-le-2, 
omega-shadow, 
mul-distributes, 
mul-associates, 
minus-minus, 
mul-swap, 
mul-commutes, 
le-add-cancel-alt, 
add-is-int-iff, 
int_seg_properties, 
nat_properties, 
decidable__le, 
select_cons_hd
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
natural_numberEquality, 
addEquality, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
applyEquality, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
promote_hyp, 
instantiate, 
productEquality, 
independent_pairFormation, 
minusEquality, 
axiomEquality, 
dependent_set_memberEquality, 
universeEquality, 
multiplyEquality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[T:Type].  \mforall{}[L,bs:T  List].  \mforall{}[i:\mBbbN{}||L||  +  ||bs||].
    (rev(L)  +  bs[i]  =  if  i  <z  ||L||  then  L[||L||  -  1  -  i]  else  bs[i  -  ||L||]  fi  )
Date html generated:
2017_04_14-AM-08_38_42
Last ObjectModification:
2017_02_27-PM-03_31_19
Theory : list_0
Home
Index