Nuprl Lemma : member-insert-int
∀[T:Type]. ∀l:T List. ∀x,z:T.  ((z ∈ insert-int(x;l)) 
⇐⇒ (z = x ∈ T) ∨ (z ∈ l)) supposing T ⊆r ℤ
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
insert-int: insert-int(x;l)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
guard: {T}
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
list_induction, 
all_wf, 
iff_wf, 
l_member_wf, 
insert-int_wf, 
or_wf, 
equal_wf, 
list_wf, 
insert_int_nil_lemma, 
member_singleton, 
cons_wf, 
nil_wf, 
insert-int-cons, 
subtype_rel_list, 
subtype_rel_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
cons_member, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
cumulativity, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addLevel, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
because_Cache, 
applyEquality, 
intEquality, 
universeEquality, 
inlFormation, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
equalityElimination, 
inrFormation, 
orFunctionality, 
dependent_pairFormation, 
promote_hyp, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}l:T  List.  \mforall{}x,z:T.    ((z  \mmember{}  insert-int(x;l))  \mLeftarrow{}{}\mRightarrow{}  (z  =  x)  \mvee{}  (z  \mmember{}  l))  supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2017_09_29-PM-05_49_04
Last ObjectModification:
2017_07_26-PM-01_37_26
Theory : list_0
Home
Index