Nuprl Lemma : member-insert-int

[T:Type]. ∀l:T List. ∀x,z:T.  ((z ∈ insert-int(x;l)) ⇐⇒ (z x ∈ T) ∨ (z ∈ l)) supposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) insert-int: insert-int(x;l) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q top: Top iff: ⇐⇒ Q and: P ∧ Q prop: rev_implies:  Q or: P ∨ Q not: ¬A false: False bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  guard: {T} bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  list_induction all_wf iff_wf l_member_wf insert-int_wf or_wf equal_wf list_wf insert_int_nil_lemma member_singleton cons_wf nil_wf insert-int-cons subtype_rel_list subtype_rel_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int cons_member eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalRule axiomEquality hypothesis thin rename lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality lambdaEquality cumulativity independent_isectElimination independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality addLevel productElimination independent_pairFormation impliesFunctionality because_Cache applyEquality intEquality universeEquality inlFormation unionElimination equalityTransitivity equalitySymmetry equalityElimination inrFormation orFunctionality dependent_pairFormation promote_hyp instantiate

Latex:
\mforall{}[T:Type].  \mforall{}l:T  List.  \mforall{}x,z:T.    ((z  \mmember{}  insert-int(x;l))  \mLeftarrow{}{}\mRightarrow{}  (z  =  x)  \mvee{}  (z  \mmember{}  l))  supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2017_09_29-PM-05_49_04
Last ObjectModification: 2017_07_26-PM-01_37_26

Theory : list_0


Home Index